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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 1A

13 Choose cat: °C; =5
and
Choose dog: 11C; = 11
Total choices: 5 X 11 = 55
14 Choose man: ’C; =7
and
Choose woman: *C; = 4
Total choices: 7 X 4 = 28
15 a Choose Y9: °°C; = 95
and
Choose Y10: 92C; = 92
and...
Total choices: 95 X 92 x 86 x 115 x 121 = 1.05 x 101°
b Choose Y9 or Y10: °°C; + °2C, = 187

and

Choose Y11: 8(C, = 86
and

Choose Y12: 115C; = 115
and

Choose Y13: 121c, =121
Total choices: 187 x 86 x 115 x 121 = 223 781 030
16 a Choose S: °C; =5
and
Choose M: 8C; =8
and
Choose D: ¢C; = 6
Total choices: 5 X 8 X 6 = 240
b Choose M: 8C; =8
and
Choose SorD: 5C; + °C; =11
Total choices: 8 X 11 = 88
c Choose S and choose M: °C; x 8C; = 40
or
Choose S and choose D: °C; X ¢C; = 30
or
Choose M and choose D: 8C; x ©C, = 48
Total choices: 40 + 30 + 48 = 118

b B0
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17 Arrange 6 boys: 6! = 720
and
Arrange 5 girls: 5! = 120
Total arrangements: 720 X 120 = 86 400
18 a Arrange 7 distinct digits: 7! = 5040 arrangements
b Those divisible by 5 must end in 5;
Arrange 6 distinct digits for the left end of the number:
6! = 720 arrrangements
19 a Arrange 8 plants: 8! = 40 320
b Arrange 2 tulips: 2! = 2
and
Arrange 6 roses: 6! = 720
Total arrangements: 2 X 720 = 1 440
20 Choose 6 from 10: 1°C, = 210
21 a Choose 3 from 7: 7C; = 35
b Choose 2 from 6: °C, = 15
22 Arrange 4 from 9: °P, = 3 024
23 Arrange 3 from 8: 8P; = 336
24 Arrange 2 from 17: 7P, = 272
25 a Choose shirt: °C; =9
and
Choose trousers: °C; = 6
and
Choose waistcoat: *C; = 4
Total choices: 9 X 6 X 4 = 216
b Number of ways to have blue and green:
Choose green shirt: 3C; = 3
and
(Choose blue trousers and any waistcoat: 2C; X *C; = 8
or
Choose non-blue trousers and blue waistcoat: *C; X 1 = 4)
Total choices: 3 X (8 + 4) = 36
Total choices excluding green and blue: 216 — 36 = 180
26 a Arrange 5 digits: 5! = 120
b Select first digit from 1,2,3: 3
and
Arrange remaining 4 digits: 4! = 24
Total arrangements: 3 X 24 = 72
27 Choose 5 numbers from 40: 4°Cs = 658 008
and
Choose 2 numbers from 10: 1°C, = 45
Total choices: 658 008 x 45 = 29 610 360
28 Choose a goalkeeper: 3C; = 3
and
Choose 3 defenders from 6: 6C; = 20
and
Choose 5 midfielders from 8: 8Cs = 56
and
Choose 2 forwards from 4: *C, = 6
Total choices: 3 X 20 X 56 X 6 = 20 160
‘7 EHD(BCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL
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29  Choose 15 from 48 to go to Paris: *8C;
and
Choose 12 from the remaining 33 to go to Rome: 33C;,
and
Choose 10 from the remaining 21 to go to Athens: 21C,,
Total choices: *8C;s X 33C;, X 21C;, = 1.37 x 102°
30 a Choose 2 boys from 17: 17C, = 136
and
Choose 3 girls from 15: 15C; = 455
Total choices: 136 X 455 = 61 880
b Choose 2 boys from 17: 17C, = 136
and
Choose 1 from Baha and Connie: 2C; = 2
and
Choose 2 girls from 13: 13C, = 78
Total choices: 136 X 2 X 78 = 21 216
31 Choose Gold or Silver for Usain: 2C; = 2
and
For the remaining two places
Arrange 2 from 7 athletes: 7P, = 42
Total arrangements: 2 X 42 = 84
32 Arrange 3 girls from 16: 1°P; = 3360
and
Arrange 2 boys from 14: 4P, = 182
Total arrangements: 3 360 X 182 = 611 520
33 Three letter/four digit:
Arrange 3 letters from 26 and arrange 4 digits from 9:
26p, x 9P, = 47 174 400
Four letter/three digit:
Arrange 4 letters from 26 and arrange 3 digits from 9:
26p, x 9P, = 180 835 200
Total codes: 47 174 400 + 180 835 200 = 228 009 600
34 a Choose 5 students from 15: >C; = 3 003
bi Choose 4 students from 14: *C, = 1001
bii All-boy committee: Choose 5 students from 7: 7Cs = 21

All other committees must contain at least one girl: 3 003 — 21 = 2 982
2982
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c = 0.993
3003
35 e =" =210
n? —n =420

n2—n—-420=0

n—-21)(n+20)=0

n = 21 (reject the solution n = —20)
36 "P,=n(n—1) =132

n2—-n-132=0

n—-12)(n+11) =0

n = 12 (reject the solutionn = —11)

‘7 EHD(BCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 3
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So "B, = "P,_4
P, is the number of ways to arrange n different items
"P,_4 is the number of ways to arrange n — 1 of n different items; but in doing
so, the unused item is also specified, so the ‘unused’ is effectively the final unit
of the ordering. We can reason that the number of possible arrangements of
n — 1 of n items must be the same as the number of complete arrangements.
Assuming that neither the presents nor the boxes are considered identical:
a Total ways: 25 = 32
b Total ways: 3* = 81
Arrange 6 students from 18 to be the front row: 18P,
and
Arrange 6 students from 12 to be the middle row: 2P,
and
Arrange 6 students from 6 to be the back row: ¢P, = 6!
Total arrangements: 8P, x 2P, x ®P, = 6.40 x 10°
a Each triangle must have three points as vertices.
Each set of three vertices can make exactly one triangle (since no three
points are collinear).
The total number of triangles that can be formed is 1°C; = 120
b Each set of four vertices can make exactly one convex quadrilateral (if
points ABCD form a quadrilateral then ACBD would not be considered a
quadrilateral).
The total number of quadrilaterals that can be formed is 1°C, = 210
Each handshake requires a pair of people (order not important)
Number of handshakes is "C, = 465

2= = 465

n? —n =930

n?—n—-930=0
n—-31)(n+30)=0

n = 31 (reject the solution n = —30)

Exercise 1B

1

2

3

Arrange 9 units and internally arrange one unit consisting of B and
C:9!'x 2! =725760

Arrange 7 units and internally arrange one unit consisting of 3 SL
books: 7! x 3! = 30 240

Freely arrange 6 letters: 6! = 720

Fix A as the start letter and arrange 5 letters: 5! = 120

Total not starting with A: 720 — 120 = 600

Tip: Alternatively, in a fully symmetrical problem like this, you could argue that of the 720 free

5 . ) . 5
arrangements, p of them will not start with A, and obtain the answer Pe 720 = 600

4

Freely arrange 7 digits: 7! = 5 040
Fix 67 as the end digits and arrange 5 digits: 5! = 120
Total not ending with 67: 5 040 — 120 = 4 920
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10

11

12

13

Freely choose 4 from 12 toys: 12C, = 495
Choose 4 from 7 soft toys: ’C, = 35
Total choices which are not all soft toys: 395 — 35 = 460
Freely arrange 7 letters: 7! = 5 040
Arrange COM and then arrange PUTE: 3! X 4! = 144
Total arrangements not beginning with letters C,O,M in some
order: 5 040 — 144 = 4 896
a Choose dark and milk and white: 1°C; x 8C; x 7C; = 560
b Freely choose 3 from 25 chocolates: 2°C; = 2 300
Choose 3 from 10 dark chocolates: 1°C; = 120
Total choices not all dark: 2 300 — 120 = 2 180
Free arrangements: 7! = 5 040
D and then arrange 6 letters: 6! = 720
Arrange 6 letters and then A: 6! = 720
D and then arrange 5 letters and then A: 5! = 120
Total arrangements: 5 040 — 720 — 720 + 120 = 3 720
Freely arrange 3 letters from 7: 7P; = 210
Arrange 3 letters from the 4 consonants: *P; = 24
Arrangements which are not all consonants: 210 — 24 = 186
Free choice of 8 students from 29: 2°Cg = 4 292 145
Choice of 8 students from 13 boys: 13Cg = 1287
Choice of 1 girl from 16 and 7 boys from 13:
16C, x 3¢, =16 x 1716 = 27 456
Total choice of 8 students with at least 2 girls:
4292 145 — 1287 — 27 456 = 4 263 402
Arrange 3 types of chocolate: 3!
and
Arrange 7 types of milk chocolate: 7!
and
Arrange 5 types of white chocolate: 5!
and
Arrange 4 types of dark chocolate: 4!
Total arrangements: 3! X 7! X 5! X 41 = 87 091 200
Arrange 10 students from 12A and 12B: 10!
and
Choose 3 of the 11 gaps: 1C;
and
Arrange the 3 students from 12C into those 3 gaps: 3!
Total permitted arrangements: 10! x 1C; x 3! = 3592 512 000
Freely arrange 9 digits: 9!
Arrange the 4 even digits: 4!
and
Arrange the 5 odd digits into the 5 gaps: 5!
Total arrangements with no two odd numbers next to each other: 4! x 5!
Probability that no two odd numbers are next to each other in a random

arrangement:
4Ix5! 1

9 126

‘7 EHD%CI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL
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14 a Arrange the two parents: 2!

and
Arrange the four children between them: 4!
Total arrangements: 2! X 4! = 48

b Arrange the two parents: 2!
and
Arrange the five ‘units’: 5!
Total arrangements: 2! X 5! = 240

c Freely arrange the 6 people: 6! = 720
Probability of b not occurring in a free arrangement:
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720-240 _ 2
720 3
15 Free choice of 5 cards from 52: 52(;
a Choice of 5 cards from 13 spades: 3C;

13
Probability that all are spades in a random deal: 522 = 6636340
b Choice of 5 cards from 26 red cards: 2°C;

26c5 253
Probability that all are red in a random deal: =—

52¢. ~ 9996

c Choice of 1 black card from 26 and 4 red cards from 26: 26C; x 26C,

.. . . 260,x2%5C, 1495
Probability that exactly one is black in a random deal: —— = ——
5

5
So probability of at least two black cards: 1 — o3 1495 _ 206z
9996 9996 2499

16 Choose which seat they will take as the left-most of the 6 from a choice of 15:
5¢, =15
Arrange the 6 people: 6! = 720
15 x 720 = 10 800
17 Free choice of 6 players from 15: >C, = 5005
Not permitting:
Choice of 6 players from Team A only: 8C, = 28
Choice of 6 players from Team B only: 7Cg = 7
Choice of 1 player from Team A and 5 players from Team B: 8C; x 7C5 = 168
Total permitted choices: 5 005 — (28 + 7 + 168) = 4 802
18  Free choice of 7 tiles from 26: 2°C,
Not permitting:
Choice of 7 letters from 21 consonants: 21C,
Choice of 1 letter from 5 vowels and 6 letters from 21 consonants: >C; X 21,
Total choices with at least 2 vowels: 26C, — (?1C, + °C; x 21Cg) = 270 200

‘7 EHD(BCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 6
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Mixed Practice g

1 Arrange 3 athletes out of 8: 8P; = 336 =

2 Arrange 4 letters out of 26 and 3 digits out of 9: 2P, x °P; = 180 835 200 o

3 Choose 3 out of 15 girls and 3 out of 11 boys: °C; x 1C; = 75 075 S

4 Freely arrange 5 cards: 5! = 120 g
Only one of these arrangements would match the order of the envelopes. ;C’
Probability that all cards and envelopes match is E

5 Arrange 3 teachers and then arrange 8 students: 3! X 8! = 241 920

6 a Choose 6 from 19 students: °C, = 27 132
b Choose Jack and Jill, then choose 4 from 17 students: 7C, = 2380

Probability of Jack and Jill both being chosen is 271302 557
7 Each of the three digits can take any of 9 values: 93 = 729
8 Choose a goalkeeper: 3C; = 3

and

Choose 4 defenders from 7: 7C, = 35

and

Choose 4 midfielders from 8: 8C, = 70

and

Choose 2 forwards from 4: *C, = 6
Total choices: 3 X 35 X 70 X 6 = 44 100
9 Choose 3 toys from 7 for the youngest: “C; = 35
and
Choose 2 toys from 4 for the eldest: *C, = 6
and
Choose 2 toys from 2 for the middle child: 2C, =1
Total choices: 35 X 6 X 1 = 210
10 Choose 1 consonant from 5 to be the final letter: °C; = 5
Choose 1 consonant from 4 to be the first letter: *C; = 4
Freely arrange the middle 5 letters: 5! = 120
Total arrangements: 5 X 4 X 120 = 2400
11 Freely choose 5 students from 28: 28C5 = 98 280
Not permitting:
Select the two youngest and then choose 3 students from 26: 26C; = 2 600
Total permitted choices: 98 280 — 2 600 = 95 680
12 Free choice of 7 students from 19: 1°C,
Not permitted:
Choice of 7 students from 9 boys: °C,
Choice of 7 students from 10 girls: 1°C,
Total permitted choices: °C, — °C, — 1°C, = 50 232
13 a Free choice of 6 students from 15: °C, = 5005
bi Free choice of 6 students from 14: *C, = 3 003
bii Not permitted:
Choice of 6 students from 9 boys: ?Cy = 84
Choice of 1 students from 6 girls and 5 from 9 boys: °C; X °Cs = 756
Total permitted choices: 5 005 — 84 — 756 = 4 165

4165
c —— = 0.832
5005
‘7 EHD%CI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 7
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14 Choose which driver is assigned to which vehicle: 2C; = 2
and
Choose 3 from 10 to be passengers in the car: 1°C; = 120
and
Choose 7 from 7 to be passengers in the SUV: 7C, = 1
Total choices: 2 X 120 X 1 = 240

15 a Free arrangement of 7 letters: 7! = 5040
b Arrange 3 vowels to be a single unit: 3! = 6
and

Arrange 5 units D, M, S, T, AEO: 5! = 120
Total arrangements: 6 X 120 = 720
¢ Arrange 4 consonants: 4! = 24
and
Arrange 3 vowels: 3! = 6
and
Choose 3 of the 5 spaces (including ends) among the consonants:
5C; =10
Total arrangements: 24 X 6 X 10 = 1 440
16 a Choose which end Amit will stand: 2C; = 2
and
Arrange the other four people: 4! = 24
Total arrangements with Amit at one end: 2 X 24 = 48
b Freely arrange 5 people: 5! = 120
Total arrangements with Amit not at an end: 120 — 48 = 72
c Arrangements with Amit at the left: 1 X 4! = 24
Arrangements with Ed at the right: 4! X 1 = 24
Arrangements with both conditions: 1 X 3! X 1 = 6.
These cases will have been counted in each of the first two arrangements, so the
double-count must be corrected.
The total number with either or both conditions is 24 + 24 — 6 = 42

17 a Probability of correctly matching all 6 numbers is

b Total number of choices is >°C4 = 15 890 700
Number of choices matching 0 of the lottery numbers: **Cg
Number of choices matching 1 of the lottery numbers: 6C; x **Csg
Number of choices matching 2 of the lottery numbers: 6C, X **C,
Then the number of ways to get a prize is
50C6 _ (44—C6 + 6C1 X 4-4-C5 + 6C2 X 44c4)
Probability of winning a prize:
S0Ce—(*4Ce+ OCix *Cs+ 0Cox *4C,y) 279335 347
50¢, ~ 15890700 19740
18 "p,=n(n—1) =380
n2—-n-380=0
n—-20)(n+19)=0
n = 20 (rejecting the negative root)
19 a Arrange 3 girls as a single unit: 3!
and
Arrange 4 units (3 boys and the block of girls): 4!
Total permitted arrangements: 3! X 4! = 144

1
50Cs 15890 700

(; HODDER
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b Arrange 3 boys: 3!
and
Choose 3 of the four spaces (including the ends) for the girls: *C; = 4
and
Arrange 3 girls into the chosen spaces: 3!
Total permitted arrangements: 3! X 4 X 3! = 144
20 a If the largest is 5, 6 or 7, then this is equivalent to drawing 4 cards from
{1,2,3,4,5, 6,7} and excluding the single case of drawing 1, 2, 3 or 4.
Number of possible choices: 7C, — 1 = 34
b Free choice of 4 cards: °C, = 126
Not permitted:
Choice of all odd numbers: >C, = 5
Choice of one even number and three odd numbers: *C; X 5C3 = 40
Total number of permitted choices: 126 — (5 + 40) = 81
21 Choose one driver from 3: 3C; = 3
and
(designating the empty seat as a passenger) arrange the 7 other seats to the seven
‘passengers’: 7!
Total possible seating arrangements: 3 X 7! = 15 120
22 a Arrange 6 people among 10 seats: 1°P, = 151 200
b Either the person with a cold must sit at an end, next to an empty seat:
Choose one end: 2C; = 2
Then arrange the other 5 people into the remaining 8 available spaces:
8p, =6720
Total arrangements: 2 X 6 720 = 13 440
Or the person with a cold sits with an empty seat to either side:
Person with a cold, with an empty seat either side, represents a
single unit
Arrange the 6 ‘units’ into the 8 available slots: 8P; = 20 160
Total possible arrangements: 13 440 + 20 160 = 33 600
23 a Choose 6 from 12 to be team A: 12C, = 924
This will count each split twice (since choosing 6 to be team A is
equivalent to choosing the other 6 to be team A; the team letters are
irrelevant, only the split matters).
So the total possible ways to divide into two teams of 6 is

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

924 +-2 =462
b Choose 4 from 12 to be team A: 2C, = 495
and

Choose 4 from the remaining 8 to be team B: 8C, = 70

The remainder will be team C.

Total ways to assign to teams A, B and C: 495 X 70 = 34 650
However, since again the team labels are not relevant, this will count
each split 3! times (since each split could be assigned A/B/C in 3! Ways)
So the total possible ways to divide into three teams of 4 is

34 650 + 3! =5775

‘7 EHD(BCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 9
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 2A

9
1, 1 1N/ 1\/ 3
1 1 5I\—75 )I\—5)\—5
(1—2x)§=1+<§>(—2x)+—(2)£| 2)(—2x)2+(2)( 3?,)( 2)(—2x)3+
) ) ! !
— 1 v a2 _ 43
=1—x 2x Zx +
10
147 1 (=38 1\ (35 1Y
(1_Zx) _1+(_3)(_Zx)+ 21 (_Zx)+ 31 (_Zx)
+ ..
=1+—x+§x2+ x3 +
47 "8 32
11
1
1 3
4(8+x)3—2(1+§x)
4
(e (D) LRy
3/\8 2! 8
—2(1 A )
- 24* T 288%
=2 b2t
— T2 T 1ag”
12
1 5\ *
2 —1=-(1_-)
(2 —5x) > 2x 2
1 5 (-1D(=2)s 5
=gt e (-gx) (o) +-
_1+5 +25 2,
—2Ty* T g
o Bilylan
ERE NIERE Mathematics for the IB Diploma: Analysis and approaches HL 1
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13 a ) @
1 1 \2 S
(9+x)2=3<1+—x) E
K 1 1 ?
Ss(1+ () () +M(1x)2 i ;s
2/\9 2! 9 =
O
=
=3+ 6X - mx
b Expansion is valid for | | <1
Thatis |x| < 9

1
c When x = 1 (which is within the interval of validity) (9 + x)z = V10:
1
(9+1)2 ~3+-— (1)——( )2 ...

216
3 35
216
~ 3.16204
14 a
1
3

2

_, 1+(1)(_§x)+w(_§x) ..

3 8 2!

—Z—ZX—B—ZX + -

b Expansion is valid for |— §x| <1
That is |x| < g
c When x = 1 (which is within the interval of validity), Y8 — 3x = V/5:
1 1 1
— 347 —2(1)——(1)2
(8-3(D) 25 7D -5+

~32
~ 1.71875

15 a
x(1 + 3x) 2 =x<1+(—2)(3x)+(_ ) )(3 )2 4 )
=x—6x%+27x3+ -

b Expansion is valid for |3x| < 1
That is |x| < é

0 Friaay
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1+x0)A-x)"=1+x) (1 + (=1 (—x) + #( x)? + >
=A+x)1+x+x2+-)
=1+2x+2x%2+ -

17

GIC I

2+ +6x)i=2+20)|1+ G) (6x) +

3 27
( +x)< +2x g X +

21
=2+4x—Tx2+

The coefficient of x2 is — 24—1

18
(1+x)%(1 +2x)"2 = (1 + 2x + x2) (1 +(=2)(2x) + (=2 )(_ )(z )2 4 )

=1+ 2x+x*)(1 —4x +12x% + ---)
=1-2x+5x*+-
The coefficient of x? is 5

b OED L O,

1
(1-4nz=1+ (E) 21 31
=1-—2x—2x%—4x3 + -

19 a

b Expansion is valid for [—-4x| < 1
That is |x| < %

c When x = 0.02,V1 — 4x =092 = ’23X%=0.2\/ﬁ

From the expansion in part a:

V1 —4x0.02~1-2(0.02) —2(0.02)%> — 4(0.02)3
~1-0.04 —0.0008 — 0.000032
~ 0.959168

V23 = 5 % 0.959168 = 4.79584

20
3)(—4)(-=5
(1+ax)_3=1+(—3)(ax)+%( x)? + ( )(3 )= )( x)3 +
=1—-3ax + 6a’x? — 10a3x3 +
—640 = —10a3
a® = 64
a=4
HODDER
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5]

21 a
Tip: You will have to do multiple expansions for this problem. The straightforward way is to

1 1
take the product of the expansions for (1 + 2x)3 and (1 — x) 3. In the worked solution below,
you can see an alternative using a nested expansion. Either method will generate the same
expansion, though the first way is more straightforward when considering the interval of
validity.

W=

1
(1+2x)§_<1+ 3x )
1—x B 1—x

= (14 3%(1 — x)-1)3

_ 3
= <1+3x(1+(—1)(—x)+( D& )( x)? + ))

1
=(1+3x+3x*+3x3+-)3

(3)(-3)

=1+ (%) (3x +3x2% 4+ 3x3) + o (3x + 3x2 + 3x3)?
: !
(%) (_ %) (_ §) (3x +3x2 + 3x3)3 ...

* 3!
5
= 1+x+x2+x3—(x2+2x3+---)+(§x3+---)+---
2
=1+x+§x3+...
b Whenx =0.04, \/”2":3\/&:3\/M:1%
1-x 0.96 0.12x8 2

From the expansion in part a:

1, 2
5V % 1+0.04+5(0.04)°

2
~ 1+ 0.04 +.0000427
~ 1.0400427

So V9 =~ 2.08009

22
nn—1)Mn-2)

3!

(1+ax)* =1+nax + n(n - )( x)? +

=1—4x + 9x? +bx +-
Comparing coefficients:

(ax)3® +

xlina = —4 (D)
2_
x2 —= . T2 = (2)
x%%aﬁ =b (3)
(1)%:n%a? = 16 (4)
2(2):n%a® —na® = 18 (5)
(4) — (5):na®?=-2 (6)
4)/(6):n=-8
HODDER
EDUCATION ) , .
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1
2

L (8910 (1) _
Then (3): b = S2E2C10 (2) ——15

Soa =

23
A=A+ ax)™
=({1-x) <1 + nax + %(ax)2 + nn - 13)'(71 —2)
=1+x(na—-1)+x? (@az —na)
3 (n(n - 16))(n —2) . n(nz— 1) 24 ) .

=1+x%+bx3+-
Comparing coefficients:
xlina—1=0 (D)
xzznzz_n a’—na=1 (2)
x3:—n(n_13)!(n_2) a’ — —n(nz_l) a?=b (3)
(1D):ina=1 (4)
2(2):n?a? —na®? —2na =2 (5)
(5) +2(4) — (4)*: —na? =3 (6)
(6)/(4):—a =3
Soa=-3,n= -3

1 4 7 1 4
Then (3) b= ( 3) ( 63) ( 3) (_3)3 _ %(3)(_3)2

14
_8
-3

24
(14+ax)" =1+ nax + n(n — )( x)? + nin-Dn=2) (ax)3 + -

3!
=1+ 21x + bx? +bx +-
Comparing coefficients:

xtina =21 (1)
x2: M g2 = 2)
x3:. M- D@=2) 3 (3)

3!

Equating (2) and (3):

6b =n(n—1)(n—2)a® =3n(n — 1)a?
nn—1)a*[(n—2)a-3]=0

From (1) rejectn = 0

Ifn =1thena = 21and b = 0, also rejected

Otherwise, (n —2)a—3 =0
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Substituting (1):
2a=na—3=18
Soa=9,n= g
7\ (4
2

Then b =Ta =

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Exercise 2B

General tip for exercise: Throughout this exercise there are two main methods which could be
used:

Worked examples 2.4 and 2.5 use substitution: values for x are substituted in turn to eliminate
each of the constants of the partial equation form, generating simultaneous equations. Ideally,
the values chosen for x eliminate one of the constants altogether, making the working much
easier.

An alternative approach is to compare coefficients. While this is not shown in the chapter
examples, there are situations where this is preferable, for example, in a more complicated
problem where the denominator has many factors, comparing coefficients allows for a check
that the factoring was correct and complete.

Both methods are shown for question 5, and the method of comparing coefficients is again used
in the worked solution to question 14.

5¢+1 A B

(x—l)(x+2)=x—1+x+2
Multiplying through by the denominator on the left:
S5x+1=A(x+2)+B(x—-1)

for some constants 4 and B

Method 1: Using substitution:
x=1:6=34As04=2
x=-2: —9=-3BsoB =3

Method 2: Comparing coefficients:
x%1=24-B (D
x1:5=A+RB (2)

(D+(2):34=6s04 =2
(2:B=5-4=3

So,
5¢x+1 _ 2 3

(x—l)(x+2)_x—1+x+2

0 Friaay
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6

3—x A B
(x+3)(x+5) _x+3+x+5
Multiplying through by the denominator on the left:
3—x=A(x+5)+B(x+3)
Substituting:
x=-3:6=2As04A=3
x=-5:8=—-2BsoB=—-4

for some constants 4 and B

So,
3—x _ 3 4

(x+3)(x+5)_x+3_x+5

7

x+5 A
(x+8)(x—4) _x+8+x—4
Multiplying through by the denominator on the left:
x+5=A(x—-4)+B(x+8)
Substituting:

X =4:9=12BsoB =

for some constants 4 and B

A w

1
x = —8: —3=—12AsoA=Z
x+5 _ 1 4 3
(x+8)(x—4) 4(x+8) 4(x—4)

8

x—10 A B
2x(x + 2) _2x+x+2
Multiplying through by the denominator on the left:
x—10=A(x+2) + B(2x)
Substituting:
x=0:-10=24s0A4=-5
x=-2: —12=—-4BsoB =3

x—10 3 5

2x(x+2)=x+2_ﬂ

for some constants 4 and B

9

2x — 8 A N
(4x +5)(x+3) (4x+5) (x+3)
Multiplying through by the denominator on the left:
2x —8 =A(x+3)+B(4x +5)

for some constants A and B

Substituting:
_ 5 21 _ 7A A —6
x = e SOA =
x=-3:—14=—-7BsoB =2
2x — 8 2 6

(4x +5)(x+3) (x+3) (4x+5)
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10

7x — 3 A B
(x+6)(x—3) _x+6+x—3
Multiplying through by the denominator on the left:
7x —3=A(x—-3)+B(x+6)
Substituting:
Xx=-6:—45=-94s0A =5
x=3:18=9BsoB =2

7x — 3 5 2

(x+6)(x—3)=x+6+x—3

for some constants 4 and B

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

11

1 A N
Bx+1)Bx—1) 3x+1 3x-1
Multiplying through by the denominator on the left:
1=ACBx—-1)+B@Bx+1)

for some constants 4 and B

Substituting:
= 1-1— 2As0 A = !
x=-3z:1= s0A=—5
—11—23 B—1
x=3:1=2BsoB =5

1 1 1

Gx+1D)Bx—1) 2Bx—-1) 2Bx+1)

12

8 —x A
3x(x +4) 3% x4
Multiplying through by the denominator on the left:
8—x=A(x+4)+ B(3x)
Substituting:
x=0:8=44As0A4A =2
Xx=-4:12=-12BsoB = -1

8 —x 2 1
3x(x+4) 3x x+4

for some constants A and B

13

3x—2a A
———— = —+ —— for some constants 4 and B
x(x—a) x x-—a

Multiplying through by the denominator on the left:
3x —2a =A(x —a) + B(x)

Substituting:

x=0:—2a=-aAsoA=2
x=a:a=aBsoB =1

3x—2a 2 1

x(x—a)_; x—a

0 Friaay
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14
4 A B

(x/§+1)(\/i+3):\/§+1+\/i+3

Multiplying through by the denominator on the left:
4=AWx+3)+B(Vx+1)

Tip: Since for real x we cannot let Vx < 0 it seems unreasonable to substitute vx = —1 or —
3; however, as you see in Chapter 4, if we allow x to take complex values then such a
substitution is fine. This is a fine example of complex numbers allowing us to travel swiftly
through calculations even though both the problem and solution involve only real values. Both
substitution method and comparing coefficients are given below. Try using the substitution
method both with the complex number option and show that the result is the same!

for some constants 4 and B

Method 1: Substitution
x=0:4=34A+4+B (1)
x=1:4=4A+2B (2)

2(1) — (2):4 =24
SoA=2B=-2
4 2 2

Wx+1)([x+3) vx+1 Jx+3

Method 2: Comparing coefficients:
x°:4=34A+B (D
Vx:0=A+B (2)

(1) — (2):4 = 24
SoA=2,B=—2

4 2 2
WVx+1)(Vx+3) vx+1 Vx+3
15

1 A B

for some constants 4 and B

(x2+2)(x2+5)_x2+2+x2+5
Multiplying through by the denominator on the left:
1=A(x?+5)+B(x?+2)

Substituting:

x=0:1=54+2B (1)

x=1:1=6A+3B (2)

1

3(1)—2(2):1=3A50A:§
1
(2):3B=1—6A=_1SOB=_§

1 1 1
(x2+2)(x2+5) 3(x2+2) 3(x%+5)
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16 a

4 — 5x A
for some constants 4 and B
Mlﬂtlpi))(ﬂqg-thﬁough H‘chthe dencdinator on the left:

4—-5x=AR2—-x)+B(1+x)
Substituting:
x=—-1:9=34As0A =3
x=2: —6=3BsoB=-2

4 — 5x 3 2
1+x)2-x) 1+x 2-x

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
4 — 5x x\ "1
=31+x)1—(1-2
T (1-3)
:3(1+(—1)x+(_ )25 Dy )
(=D(=2) /1 x\?
(e
1 1
=(3—3x+3x2+---)—(1+5x+2x2+---)
ISR ¢ TP
TeTY T
c Expansion is valid where both |x| < 1 and |—§| <1
So |x| <1and|x| <2
The overlapping region of validity is x| < 1
17 a
7x-2 A B

for some constants A and B

(1—x)(2+3x)_1—x+2+3x
Multiplying through by the denominator on the left:
7x —2=AR2 +3x)+B(1—x)

Substituting:
x=1:5=54As04=1
2 20_5B B4
x=-gi-5= soB =
7x —2 1 4

(1-x)(2+3x) 1—-x 2+43x

b

7x -2 o 3x
0@+ 179 2<1+ 2)

=<1+(—1)(—x>+( S )

1{reen(®) CADEY

-1

0 Friaay
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9
=(1+x+x2+-~)—<2—3x+§x2+---)

=—1 +4x—%x2 + .-
c Expansion is valid where both |—x| < 1 and |37x| <1
So |x| < 1and |x| <2
The overlapping region of validity is |x| < %

18

1 1 A
for some constants 4 and B

= = +
2x2+3x+1 (x+D(x+1) 2x+1 x+1
Multiplying through by the denominator on the left:
1=Ax+1)+B2x+1)

Substituting:

= 1-1—1A A=2

x=—5:l=-Asod=

x=-1:1=—-BsoB=-1
1 2 1

22 +3x+1 2x+1 (x+1)
Applying binomial theorem to each partial fraction:

2 +20) =+t
Z 1 3eg 1 20+ 207 -1 +x)

=2<1+(—1)(2x)+( D(=2 )(2 )2 4 )

2
—<1+(—1)x+% + - )
=Q2-4x+8x*+-)—(Q—-x+x*+-)
=1-3x+7x*+ -
b Expansion is valid where both |2x| < 1 and |x| < 1
So |x| <% and |x|] < 1

The overlapping region of validity is x| < %

19

S5x +3 5x +3 A B
T+2xr—3x2 (1+30(0-x) 1+3x 1-=x
Multiplying through by the denominator on the left:
5x+3=A4(1—-x)+ B(1+ 3x)
Substituting:

for some constants 4 and B

x=1:8=4BsoB =2
Sx+3 1 4 2
14+2x—3x2 1+3x 1-—x
Applying binomial theorem to each partial fraction:

5x+3
———=(14+3x)"'+2(1 -1
1+ 2x — 3x? ( ) ( )
HODDER
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)

= <1+(—1)(3x)+( D= )(3 )2+ ) 5

1) (— E
+2<1+(—1)(—x)+—( ;E )(—x)2+-~> o

' o

=(1—-3x+9x%+ )+ 2+ 2x+2x*+ ) E
=3—x+11x% + - 5

b Expansion is valid where both |3x| < 1 and |—x| < 1 =

So |x| < and |x| <1
The overlapping region of validity is |x| < %

20

a a A B
= = + for some constants 4 and B

x2—3ax+2a> (x—a)(x—2a) x—a x-2a
Multiplying through by the denominator on the left:
a=A(x—2a)+B(x—a)

Substituting:
x=aa=—-aldsod=-1
x=2a:a=aBsoB=1

a 1 1

x2—3ax+2a> x—-2a x—a

0 Friaay
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Exercise 2C 2
S

11 g
2x — 3y +2z=13 (D ©
I

3x+y—z=2 (2) kA
3x —4y—-3z=1 (3) %"
(1) +2(2):8x —y = 17 (4) =

3)—-32):—6x—7y=-5 (5)
7(4) — (5): 62x = 124

x=2

(4):y=8x—-17 =-1
2):z=3x+y—2=3

12
x+4y—5z=-3 (D
2x —y 45z =12 )

8x +5y+ 11z =30 (3)
(2) —2(1): =9y + 152 =18  (4)
(3)—4(2):9y —9z=-18  (5)
(4)+(5):6z=0
z=0
(5):9y =—-18+4+9z=—-18soy = -2
(1):x=2z—4y—-3=5

13 a
a+b+c=4 (D)
9a+3b+c=14 (2)

16a + 4b + ¢ = 25 (3)
b FromGDC:a=2,b=-3,c=5

14 a
—a+b—c=7
8a+4b+2c =4

27a+9b + 3c =3
b FromGDC:a=-1,b=4,c = -2

15 a
x+2y+kz=28 (1)
2x +5y+2z=7 (2)
Sx+12y+z=2 3)
2)-21):y+@2—-2k)z=-9 (4)
(3)—5(1):2y+ (1 —5k)z=—-38 (5)
(5)—-2M4):(-3—-k)z=-20 (6)
When k = —3, this would be impossible and for any other value of k there would be a
unique solution.
The system is inconsistent for k = —3.
‘ HODDER
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b e
Setting k = 2: o
(6): —=5z=-20s0z=4 5
(4):y=2z—-9=-1 9
(1):x=8-2y—2z=2 3
X
[
16 a ;°
kx+y+2z=4 (D
3x+ky—2z=1 (2)

-x+y+z=-2(3)
M+@):k+3)x+(k+1y=5 (4)
2)+23):x+2+k)y=-3 (5)
W) -k+3)xG)tk+1D)y—(k+2)(k+3)y=5+3(k+3)
(—k? — 4k —5)y = 14 + 3k

14 + 3k 14 + 3k

Y Tkt ak+5 1+ (k+2)2
Since the denominator is a quadratic with no real roots (minimum value 1), y has a
unique value for any value k. Therefore, the system is consistent for all k € R

b
Setting k = 1:
17 17
Y=

(5):x = —3—3y =21
B)z=x—y—2=18

17 a

xX—y—2z=2 (1)

2x—2y+z=0 (2)

3x—3y+4z=a 3)
(2)—2(1):5z=—-4
(3)—3(1):10z=a—-6
For these to be consistent, a — 6 = —8soa = —2

b

When a = —2, the system has solution z = —0.8,x —y = 0.4
Parameterising:

x=044+1y=1z=-08

18

x—2y+z=2 (1)

x+y—-3z=k (2)

2x —y— 2z =k?(3)

2)—(1):3y—4z=k—-2

(3)—2(1):3y—4z=k?>—4
For the system to be consistent, k — 2 = k? — 4 = (k — 2)(k + 2)
Sok+2=10ork—2=0

k=—-1or?2
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5]

Then the system will have infinite solutions, since the three equations are not linearly
independent (that is, any one can be produced as a linear combination of the other two).

19

Let the three numbers be x,y and z, where x <y < z
x+y+z

3
Range =z —x
Median = y
The information given can be summarised as:
(x+y+z=6y (1)
{z—x =05y (2)
v—x=1 3)
Rearranging to standard format:
(x—5y+z= 0 (1)
{x+5y—z=0 (2)
(x—y=-1 3)
D+ (2):2x=0

Mean =

(3ry=1
(1):z=5
The largest number is 5.
20
—x+ 2k —-5)y—2z=3 (1)
3x—y+(k—1)z=4 (2)
x+y+2z=-1 3)
3(1) + (2):(6k—16)y + (k—7)z = 13 4)
M+B):Rk-4)y=2 (5)
From (5) if k = 2 then the system is inconsistent
Otherwise:

(k—2)x4)—Bk—8)(5):(k—2)(k—7)z=T7k—10
The system is also inconsistent when k = 7.

21
3x —y+5z=2 (1)
2x +4y+z=1 (2)
x+y+kz=c (3)
(1)=3(3):—4y+(5—3k)z=2—-3c (4)
(2)—-23):2y+(1-2k)z=1-2¢c (5
4)+205):(7-7k)z=4—-"Tc (6)
a If k # 1 then the system will have a unique solution
b Ifk=1andc = %then (6) reduces to 0 = 0 and the system will have
infinitely many solutions

If z = 21 then (5) gives 2y — 24 = ——soy /I—E

Then (3) givesx =c—y — kz—;—/1+ﬁ—2,1_ﬁ_3,1
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Solution is x = — — 3Ly= 4 —i,z =21
14 14
c Ifk=1andc # - then there are no solutions, since (6) reduces to
0+0

22

Let the three-digit number be written xyz so that its value is 100x + 10y + z
Require that each of x, y and z be single digit integers.

The reversed number zyx has value 100z + 10y + x

The information given can be summarised as:

x+y+z=16 (D
z=2x—-y| (2)
100z + 10y + x = 100x + 10y + z — 297 (3)
Rearranging to standard format and splitting the modulus statement into two cases:
x+y+z=16 (D
2x —2y+z=0 (2a)
2x —2y—2z=0 (2b)

\ 99x — 9927 = 297 3)

3):x—z=3 (4)
D+ M@):2x+y=19 (5)
(2a) + (4):3x — 2y = 3 (6a)
(2b) — (4):x — 2y = =3 (6b)

2(5) + (6a): 7x = 41 which does not have an integer solution
2(3)+ (6b):5x =35s0x =7

Then (4) gives z = 4 and (1) givesy = 5

The only solution is number 754.
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Mixed Practice

(7))
c
1 S
1 1 1 1 3 2
1 ) -5 -=)(- o
(1—3x)2—1+<2>( 3x)+—(2)£' 2)( 3x)2+(2)( 3?,)( 2)( 3%)% + o
L3 9, 7 3'+ ' £
=l—-cx—cx*——x o
2 8 16 =
2 a
PN S A
2 = — —
(9 + 4x) 3( +9x) 1 3
_1 1+<_1)<ix)+M(EX)Z+...
3 2/ \9 2! 9
1z o2,
BT ARE TR
b Expansion is valid for |5x| <1
Thatis|x|<z
3 a
! = = (1+ 3x)72
T+6x+9x2 (1+3%)2 x
a=3n=-2
b
2)(=3)(—4
(1+3x)‘2=1+(—2)(3x)+( )( )(3 )% + - )(3 )& )(3 )3 +
=1—6x+27x2—108x + -
4
3x—1 A

——— = —+ —— for some constants 4 and B
x(x+1) x x+1

Multiplying through by the denominator on the left:
3x —1=A(x+1) + Bx

Substituting:

x=0-1=A4

x=—-1: —4=—-BsoB=4

5

5 A N
(Bx—4)(x+2) 3x—4 x+2
Multiplying through by the denominator on the left:
5=A(x+2)+BBx—4)

for some constants A and B

Substituting:

_4 0, 3
X = 30 =3 SOA = >
x=-2:5=-10Bso B =—%

5 3 1
Bx—4)(x+2) 2Bx—4) 2(x+2)
(> HODDER
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6

27 — x A B
(x+6)(x—5) _x+6+x—5
Multiplying through by the denominator on the left:
27 —x =A(x —5)+B(x+6)
Substituting:
x=—-6:33=—-114As0A4 = -3
x=5:22=11BsoB =2

27 —x 2 3
(x+6)(x—5) x—5 x+6

for some constants 4 and B

7
2x—y+3z=4 (D
3x+2y+4z=11 (2)
5 -3y +5z=-1 3

(2) + 2(1): 7x + 10z = 19 (4)

3(1)) - (3):x+ 4z =13 (5)
7(5) — (4):18z =72
Soz=4

(5):x=13 -4z = -3
1):y=2x+3z—4=2

8
—2x+3y+z=4 (1)
x—4y+2z=38 (2)
7x — 18y + 4z =16 (3)
(2)—2(1):5x—10y =0 (4)

(3) —4(1):15x — 30y =0 (5)

(5)—-3(4):0=0

The system is consistent and has infinitely many solutions.

(4):x =2ysosety = Athenx = 21 and from (1),z=4+2x—-3y =4+ 1
General solution: x = 21,y = 1,z = 44

9
{x+3y+4z=2 (D
3x +8y+12z=5 (2)
3()—-@2):y=1
Then (1) gives x + 4z = —1
Setz = A.
General solution: x = -1 -4, y=1,z= 1

10 a
4a—-2b+c=12 (D
a—b+c=1 (2)
a+b+c=-3 3)
HODDER
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b
(1) —2(2):2a—c =10 (4)
(1) +2(3):6a+3c=6 (5)
3(4)+ (5):12a=36s0a =3
(4):c=2a—-10=—-4
Bxb=-3—-a—c=-2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

11 a
1+ 2x
m = (1 + Z.X')(]. + .X')_z
-2)(—3 -2)(—3)(—4

= (1+2x)<1+(—2)x+( )2(| )x2+( )(3|)( )x3+--->

=(1+2x)(1—2x+3x%—4x3+ )

=1—-x*4+2x3+-

b Expansion is valid for |x| < 1

12

-2

2-3x)2 4

a+x _(a+x)(1_§x)
2
(

(a+x) (=2)(-3)/ 3 \?
= (14 o (50 + T (-5x)
(a+x) 27
= 1 —_x2 ...)
Z ( +3x+-at +
Th ffi t of ax27+3 27a+12_15
e coefficient of x? 1s4 YR 16 =3
27a+ 12 =120
a=4
13 a

2 3
(84 6x)3 = 4(1 +Zx)

. 1+(E)(§x>+(§)(_‘§)(§x)z+...

3/\4 2! 4
=4 (1 + ! Ly + )
B 2 x1 16~
=4+2x ——x% 4
4
b Expansion is valid for Ex| <1
4
That is |x| < 3
(> HODDER
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c
When x = é, which lies within the interval of validity for the expansion,

2 2
(8 + 6x)3 = 103 = V100
Using the expansion in part a:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2 1
V100 ~ 4 + - — —
0 +3 36
~ 4.639
14 a
10 — 3x _ A B

- f tants A and B
(14 3x)(2 — 5x%) 1+3x+2—5x or some constants 4 an

Multiplying through by the denominator on the left:
10 —3x = A(2 — 5x) + B(1 + 3x)

Substituting:

= 1'11—11A A=3
x=-3 =5 Asod=

2 44_1lB B4
x=gig=gBsoB=

10 — 3x 3 4

(1+3x)(2—5x)_1+3x+2—5x

b
10 — 3x
(14 3x)(2-5x)

-1

=3(1+3x)"1+2 (1 —;x)
=3(1+(—1)(3x) - )( )(3 )2+ )
+2<1+( 1)(—5 >+( 1)2(| 2)<—;x)2+--->
=(3—9x+27x2+---)+(2+5x+§x2+--->

79
=5—4x+7x2+
Cc

Expansion is valid where both |3x| < 1 and |— §x| <1
So |x| < %and [x| < %

The overlapping region of validity is x| < é

15
3x—y+z=17 (D
x+2y—z=8 (2)
2x —3y+2z=k 3
32) - (1):7y —4z=7 (4)
22) - (3):7y—4z=16—-k (5)
a For the system to be consistent, require 7 =16 —ksok =9
‘ HODDER
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b Parameterizing the system: letz = 74
From (4):7y =7+4z=7+281soy =1+ 441
From (2):ix =8—-2y+z=6—-1

16

2x—y+3z=2 (1)
3x+y+2z=-2 (2)
—x+2y+az=0> 3)

(D+23):3y+B+2a)z=2+2b (4)
2)+33):7y+2+3a)z=-2+3b (5)

7(4) — 3(5):(15+ 5a)z =20+ 5b

B3+a)z=4+b(6)

For the system to be consistent but have no unique solution,a = —3 and b = —4

17
1 1—x

1+x+x2=1—x3
=(1-x)1-x3"1
=1-x)A+D(x3)+
=1Q-0)0+x3+x54-)
=1—x+x% 4

(=D(=2)

S (%) )

Tip: You could alternatively expand directly as

(1+ (x+x2))_1
=14 DG+ a2) + T gy EDEDED
+ cee
=1—x—x24@x%+2x3+x*) — (3 +3x* +3x5 + x°) + -
x4 xS

(x + x2)3

Although you will get the same terms, this method is problematic because it is far harder to
establish an interval of validity, due to powers of (x + x?) impacting several coefficients of the
final series — you may wish to read about the Ratio test for convergence of series to have an
insight as to why this is important. Looking at the solution shown first, it is quickly clear that
the interval of validity is |x| < 1.
18
Partial fractions:

11x -3 A B

2x—D(x—3) 2x—1 x—3
Multiplying through by the denominator on the left:
11x —3=A(x—-3)+B(2x—-1)

for some constants 4 and B

Substituting:

R 5A A=-1
x=gi5=—7As0A=
x=3:30=5BsoB=6

11x -3 6 1

2x—1D(x-3) x—3 2x—1
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-1

= -2 (1 —%x) +(1-2x)"1

(-4 B
+<1+(—1)(—2x) - )( )( 2x)% + )
— 2 2 2
——2—§x—§x 4+ 14 2x + 4x% + -
4 34,
=—1+§x+?x + -
4
=—1+§X+“'
19 a
11:152’; = (14 507(1 + 12x) 2
1 1
_ ()(5)+()( )(5 )2 4o 1+(—%)(12x)
1 3
+(_7)2!(_7)(1z )24
=(1+;x—§x +- )(1—6x+54x + )
=1—;x+
b

Expansion is valid where both |5x| < 1 and [12x| < 1
So |x| < Tand |x| < =

5 12
The overlapping region of validity is |x| < %

C

Whenx — 001 | LH5% _ [L05_ 105 7x15 1
enx =000 Tr12x 112|112 |7x16 4
Then V15 ~ 4(1 — 0.035)

~ 4(0.965)
=~ 3.86
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20 2
nn—1)(n-—2 o
Q1+a)"=1+nax +—— ( L (ax)? + ( 3)'( ) (ax)® + s
15 ' o
=1—3x+7x + bx3 + - o)
Comparing coefficients: g
xlina = -3 (1) ;°
xz:nz_na2=E 2)
( : )(n-2) 2
nn-1)(n-2
x"‘:Ta3 =b 3)
(1)%:n%a?2 =9 (4)

2(2):n?a? —na? =15 (5)
(4)— (5):na®?=-6 (6)

(@)/(E)xn =3

Soa =2
3 5 7
—3)\=35)\{—>7 35
then iy = 2D (D) 03
6 2
21
nn—-1 nn—1)n-2
(1+ax)" =1+ nax + (T)(ax)z + ( 3)|( ) (ax)? +
=1 — 9x + 54x?% + bx3 + - .
Comparing coefficients:
xl:ina =-9 (D)
2 _
x2: 5 " a? =54 )
x3:—n(n_13)!(n_2) a>=b (3)
(1)%:n%a? = 81 (4)
2(2):n?a? —na? = 108 (5)
4) — (5):na® = =27 (6)
(
(4)/(6):n=-3
Soa=3
—-3)(—4)(-5
hen (3):b = (=3)( 6 X )(3)3 = —-270
‘7 HODDER
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5]

22 a

2x+y+6z=0 (D

4x +3y+ 14z =4 (2)

2x —2y+(@a—2)z=p-12 (3)
2) - (2):—y—2z=—4 (4)

M-3B)3y+B—a)z=12-p (5)
34)+(B):R2-a)z=-p

i If @ = 2 and § # 0 then the system is inconsistent (has no solutions)
ii If « # 2 then the system has a unique solution
iii If &« = 2 and § = 0 then the system is consistent and has infinitely
many solutions.
b When a = 2 and 8 = 0, (4) and (5) have the same information.
(4) givesy =4 — 2z
(1 gives2x =—y—6z=—-4—4zsox = -2 — 2z
In Cartesian form, this can be expressed as
x+2 y—4
o, T T T ¢
The parameterised version wouldbe x = =2 — 21,y =4 —-24,z= 41
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 3A

_3 _2_2¥
8 cosecA—3,secB—\/§— 3
9
Taking the Pythagorean identity: sin® 6 + cos? 8 = 1 (*)
: . : cos’f -
sin? 6 + cot? @ sin®? 6 = sin? 6 + in2g < sin? 6 by definition of cot 8
= sin® 6 + cos? 0
=1 by (x)
10 From GDC, the only solution is x = 0.644
11 a From GDC: The only stationary point is a local minimum at
(0.715, 2.39)
b There is no upper bound to the values taken by f(x) so the range is
f(x) = 2.39
12 Using the definition of cot 4,
cosA
sinAcotA =sinA4 X —
sinA
=cosA
13 Using the definition of tan B, sec B and cosec B,
tan B B = sin B y 1
anpcosect = cosB sinB
1
cos B
= secB
14 arcsin(sinm) = arcsin0 = 0
&y HoRoER
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15

y:

Vertical asymptotes where cos 2x = 0: x =

1
CcoSs 2x

(2n+1)
4

Local minima at (nm, 1)

Local maxima at (

5]

(2n+1) 7, _1)
2

1
(m,1) (2m, 1)
» T
9 _1) (BTTra _1)
16
3
y= tan 2x .
Vertical asymptotes where tan 2x = 0: x = o7
Roots where tan 2x is undefined: x = 224
y
)
» T
z=12 =7
17
1 1
Yy == =——
sin(x — ) sinx

Vertical asymptotes where sinx = 0: x = nm

Local maxima at ((Zn + %) T, —1)

Local minima at ((Zn — %) T, 1)
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%,_1)

18

tanx + cotx

sinx cosx

cosx Sinx
sin? x 4 cos? x

coS x sin x
1
"~ cosxsinx
= secXx cosecx
19
1
secx — cosx = —Ccosx
cos X
_ 1—cos?x
T cosx
_sin*x
©cosx
] sinx
= sinx X
Ccos X
=sinxtanx
20
sin sin 6 (14 cosf)—(1—cosH)
- = sin
1—cosf 1+ cosb (1 —cosB)(1+ cosB)
ing 2cos 6
=sinf X ——
1 —cos?0
ing 2cos 6
=sinf X ———
sinZ @
2cos 0
" sin@
= 2cotd
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21

2tan’x +3secx =0
2(sec?x—1)+3secx =0
2sec’x+3secx—2=0
(secx+2)(2secx—1)=0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

secx = —2o0r % (reject; outside the range of sec x)
1
cosx =—7
2
X = i?
22

Considering the graphs of y = arccos x and y = 2x:
v

(_1?77)

Yy = arccosx
= I

arccos x = 2x has only one solution.
23 arccos(—x) = m — arccos x

24 a

Using the identity 1 + tan? 8 = sec? 6:

sec’x —3tanx+1=(1+tan?x) —3tanx + 1

=tan’x —3tanx + 2

Soifsec?x —3tanx + 1 =0, thentan’?x —3tanx+2 =0
b

(tanx — 1)(tanx —2) =0

tanx = 1lor2
c

s
Primary solutions: x; = arctan1 = 7 and x, = arctan2 = 1.11

5n
Secondary solutions: x; = x; + T = T and x, = x, + m = 4.25
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25 N
o §
cosec2x = —p E
-t 2
2sinx cosx S
_1 2
=3 cosecx secx =
26 =
20 = 1
Sec " cos 26
_ 1
" 2cos26 -1
Dividing numerator and denominator by cos? 9:
25 = sec? 0
e = T sec? 0
27

Let y = secx so that x = arcsecy

Then — = cosx

5)
x = arccos | —
y
1

arcsecy = arccos (;)
Changing variables:

1
arcsec x = arccos (—)
X

28 a

AtP,y =0so4xcosf = 20: x = 5secl
AtQ,x = 0so5ysinf = 20:y = 4 cosect
P:(5secf,0);Q: (0,4 cosecB)

Then M has coordinates (2.5sec8, 2 cosecf)

b
Substituting x = 2.5sec and y = 2 cosec8 :
25 16 )
— +— =4cos’ 0 +4sin*6 = 4
xe oy
So M does lie on the curve.
29 a Domain: x € R
Range: 0 <f(x) <m
b The function f(x) = arccos(cos x) repeats every 2:
Yy
A
y = arccos(cos )
(—m,m) (7, )
T
27 0 2
i f(x) =x—2m
ii f(x) =2mr—x
iii f(x) = —x
‘ HODDER
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30
To see the graph of y = isin x, draw the graph of x = sin y and specify the values of y

according to the definition:
Y

1

z =siny

(72)
c
9o
=
=
(e)
(7]
©
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=
[
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T y=isin z

y = arcsinz

If the green part of the curve (y = arcsin x) represents the interval of primary solutions
to a problem sin y = k then the red part of the curve (y = isin x) is equivalent to the
secondary solutions. Since a secondary solution y, is found from the primary solution
Y1 by y, = m — y,, it follows that:

isin x = m — arcsinx
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Exercise 3B
11 a
sin(m + x) = sinm cos x + coswsinx
=0cosx —sinx
= —sinx
b

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

=

IERS

12
sin (0 + g) + sin (9 — g)
= (sm 6 cos (g) + cos 6 sin (g))
(sm 6 cos ( ) + cos @ sm( g))

1 3 1 3
—sin @ +§cos€> + (—sine —§c056>

2 2
=siné
13
2T 41
cos x + cos (x +?> + cos (x +?)
2 . . (2r
=cosx + (cos X COS (?) — sin x sin <?>)
# (cosxcos () = simsin (7))
COS X COS 3 sin x sin 3
[t B
= cosx 2cosx > sinx
o(-1 + 3
> COS X > sinx
=0
14 a

sin(x + 45°) + cos(x + 45°)
= (sinx cos 45° + cos x sin 45°) + (cos x cos 45° — sin x sin 45°)

1 1 1 1
= (—smx +—COSX) + (—COS.X ——smx)

V2 V2 V2 V2
= \/E COS X
(> HODDER
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b
V2
\/Ecosx=7

_ 1
cosx = >
x = 60° or 300°
15
cosx Sinx

sinx cosx
_ cos?x —sin®x

cotx —tanx =

sinx cos x
cos 2x

N =

sin 2x

= 2 cot2x
16

T s
tan (6 + g) —tan (6 - g) tang +tan(7)  tang —tan(7)

1 —tan @ tan (%) - 1+ tanf tan (%)
_tanf+1 tanf -1

“1—tanf 1+tanf
_ (tan6 + 1)* + (tan 6 — 1)?

(1—-tan6)(1 + tanb)
(tan29 +2tanf + 1) + (tan? 0 — 2tan 0 + 1)

1 —tan%6

2tan?6 + 2

~ 1—tan26
17 a
2tanx

tan2x = ——
1—tan?x

tanx + tan 2x

tan 3x =
anox 1 —tanxtan 2x
1 3

_3*7

4
X

/\ r—\

HH
UJ
-mw

~—~
»P|UJ
N——
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18
tan(§ — 45°) = 1 _ tan 6 — tan 45°
an " 2 1+tan6Otan45°

_tan9—1
. " 1+tan6
tan9—1=§(1+tan9)
t 9—3
297 =5
tanf = 3
19 a

T
0<A<ESOO<COSA<1

1 2V2
A=41-sin?A= [1—=-=——
cos sin 5 3
b
I8
0<B<EsoO<cosB<1
B 1 in? B 1 16_3
cosB = —sin“B = ——==
25 5
cos(A+ B) = cosAcosB —sinAsinB
2\/_X3 14
3 5 3 5
_6V2-4
- 15

20
x and y are both acute, so 0 < cosx,cosy <1

cosx =+1—sin?2x = ’1——

—§in2 vy =
cosy =4/1—sin“y = ~169 13
sin(x —y) = sinx cosy — cos x siny

_3 12 4 5

5 13 5 13

_ 16

65
21

sin(6 + 60°) = 2 cos 8
sin @ cos 60° 4+ cos @ sin 60° = 2 cos @

1 V3
Esm@ = (2—7>c059

tanf = 4 — /3
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22
tanx —tany

tan(x —y) = 1+tanxtany

tanx —tany = 2+ 2tanxtany

tany (2tanx + 1) = tanx — 2
tanx — 2

tany = ————
any 2tanx + 1

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Tip: Alternatively:
x —y = arctan 2
y = x — arctan 2

tany = tan(x — arctan 2)
tan x — tan(arctan 2)

"~ 1+ tan x tan(arctan 2)

B tanx — 2
T 14 2tanx
23
2tan A 3
tan2 = ——mMmM= ——

1—tan? 4 4
8tanA = —3 + 3tan’ A
3tan’A —8tanA—-3=0
(B3tanA+ 1)(tanA—-3) =0

tan4 = —% or 3
24

T T T T
cos (8) cos (24) — sin (8) sin (24) =

|
(@)
(@]
wn
VN
I
+
| =
N—

i

(@]

o

]
VN
SE
N———

25

cos 15° + V3 sin 15° = R sinx cos 15° + R cos x sin 15° = R sin(x 4 15°)
where Rsinx = 1 and R cosx = v/3

R = /R2(sin2 x + cos? x)

=,/12+x/§2

=2

_Rsinx 1 _t _1(1)_300
Rcosx_\/§sox_ an N
Then cos 15° + /3 sin 15° = 2 sin(45°) = /2
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26 e
{4+ B) cos(A + B) 15
R t=
€0 sin(4 + B) E
__cosAcos B —sinAsinB o
" sinAcosB + cos Asin B %
Dividing numerator and denominator by sin A sin B: =<
t(A+B)—COtACOtB_1 ;°
co "~ cotA + cotB
27 a sin(x + x) = sinx cosx + cos x sinx = 2 sinx cos x
b
sin2x = tanx
sinx
2sinxcosx =
cos x
sin x
(2 cos’x—1)=0
o 1
sinx =0orcosx = +—
V2
Solutions for 0 < x < 2m:
— 02 _m 3m St In
x=0,m2morx =,

28
Lett = tan 22.5°

2t
Then using double angle identity for tan, tan 45° = ¢
2t 1
1—t2
1—t2=2t
t2+2t—1=0
t=-1+V2
Since tan 22.5° must be positive, tan 22.5° = /2 — 1
29 a
o tanx —tan (%)
tan (x — —) = =
1+ tanx tan (Z)
_tanx —1
" tanx +1

b
tanfd — 1 — 6tang
tanf +1 an
6tan’6 + 6tan6 = tanf — 1
6tan’6 + 5tanf +1 =10
(3tanf +1)(2tan6+1) =0

1 1
tanf = — 3 or — >
‘ HODDER
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30 a
sin 260 = 2sin @ cos 6 and cos 260 = cos? § — sin?
Then sin 30 = sin 260 cos 8 + cos 20 sin 6
= 2sin6 cos? 0 + cos? @ sinf — sin3 0
= 3sin6 cos? 0 —sin® 6
= 3sinf (1 —sin?0) —sin3 6
= 3sinf — 4sin3 6

(72)
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=
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b
sin3x = 2sinx
3sinx —4sin®x = 2sinx
sinx (1 —4sin?x) =0
1
sinx =0orsinx = iz

Solutions for 0 < x < m:

T 5w
x=0,mrorx =—

6’ 6
31 a
sin(m — x) = sinm cosx — coswsinx
= 0cosx + sinx

= sinx
b

Angle in a triangle sum to 7 radians so C = m — 24
From part a:
sinC = sin2A = 2sinAcos A

sinC
Then — =2cosA

sin A
32 a

3sinx —7cosx = Rsinxcosf —Rcosxsinf = Rsin(x — 0)
where Rcos@ = 3 and Rsinf =7

R = /R?(sin2 6 + cos? 6)

= /7% + 32

=58
b
Then the minimum value of 10 + 3sinx — 7 cosx is 10 — /58
3
So the maximum value of the expression is ——————
P 10 — /58

33 a

3sinf +v3cosf = Rsinf cosa + R cos @ sina = R sin(0 + a)
where Rcosa = 3 and Rsina = /3

R = \/R?(sin? 6 + cos? 6)

= ,/\/52 + 32

) _Rsina_\/§ _ " (1)_
ana_Rcosa— 3 SO a = arctan NG =

T
3sin@ + V3 cosd =2\/§sin(9 +E)

T
6
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b
The maximum value of 6 + 3 sin 8 + V3 cos 6 is therefore 6 + 2v/3
So the minimum of f(x) is

1 1 62\/_62\/_ 3-43

6+2v3 6+2\/_ 6—2v3 36—12 12
This occurs when 2+/3 sin (Zx + g) = 2v/3s02x = g

(72)
c
9o
=
=
(e)
(7]
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m
*~%
34
Using the compound angle formula for tan(4 + B) and that tan(arctanp) = p
1 1
1 1 2 5
tan(arctan (= | —arctan(=)) = —=—=——=
(arctan () = avetan (5)) = —21 5
275
3
_I0
11
10
_ 3
11
35 a
. (T o (T _ T .
sin (E — x) = sin (2) COS X — COS (2) sin x
=1cosx —0sinx
= cosx
b

sin(A + B) = sinA cos B + cos Asin B
Using part a to rewrite the cosine in terms of sine:

cos(A + B) = sin (g—A — B)

[y
= sin <(E - A) — B)
Using the compound angle formula for sine:
cos(4A + B) = sin (E - A) cos B — cos (E — A) sin B
2 2

Then using that sin (g — A) = cos A and therefore also cos (g — A) = sin (g —

(5- A)) = sin A:

cos(A+ B) = cos Acos B —sinAsinB

36 a
tan 36 = tan(6 + 26)
_ tan6 +tan26

" 1—tanftan26

2tané@ )
_ tand + (1 —tan? 6
- 2tané@
1—tan (—)
tan 6 1—tan?6
(> HODDER
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3tan6 — tan3 6
( 1 —tan?0 )
1—3tan26
( 1 —tan26 )
_ 3tan6 —tan36
1—3tan?%6

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b

Sincetan 30° = —
V3
If tan 10° = t then by part a,

1 _3t—t3

V3 1-—3t2
1

So— —+/3t2 =3t —¢3
V3

V3
—/3t2 -3t + 3= 0, as required.

Mixed Practice

1
1
sec6—3soc059—§
20 =2 2g—-1= 2 -1 ’
cos = 2 cos = —=
9 9
2 a
T T T . . T /A . L T
cos (x + Z) + cos (x - Z) = (cosx cosz —sinx sz) + (cosx COSZ + smxsmz)
(1 1 )+<1 4 1 )
=|—=cosx ——sinx —cosx + —sinx
2T 2R
=+/2cosx
b
V2 cosx =+2sinx
tanx =1
Solutions for 0 < x < m:
T
XT3
3 a

. TC TC T T T ] 5
sm(x+§)+cos(x+g)— smxcos—+cosxsm3)+(cosxcosa—smxsm—)

6
V3 1
—smx+—cosx + —cosx—zsmx

2

=+/3cosx
b
V3 cosx = sinx

tanx = V3
Solutions for 0 < x < 2m:
m 4
*T373
‘7 HODDER
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5]

4 a

tan 20 = 2tané _6_ 3
M =T T an?e 8 4

b

Angle is acute, so 0 < cos8 < 1 and so secf > 1

sec’fd =tan’0+1 =10

Selecting the positive root: secd = v10

5

cos(A+ B) = cosAcosB —sinAsinB
= cos A cos B — +/sin? Asin? B

= cosAcosB — \/(1 —cos? A)(1 — cos? B)

—1x1+ 3x8
27370479
1 2
=4 |=
6 3
_1+2V6
6
6
2
T
(arcsinx)? = —
9
T
arcsinx = + —
n3
x=sm(i§)
3
LB
2
7

tan 105° = tan(60° + 45°)
_ tan 60° + tan 45°

" 1 —tan 60°tan 45°
V341

T1-3

B (\/§+1)2

T (1-v3)(1++3)
=4+2\/§

—2
=-2-3
8

sin (x +g) = sin (x - g)

T T

sinxcos§+ cosxsin§ = sinxcos§— cos x sin—

T
2cosxsin§= 0

cosx =0
Solutions for 0 < x < 2m: x = %

HODDER
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’ -
tanx +tan2x =0 L)
¢ 4 2tanx 0 5
anx + — = =
. 1 —tan?x 3
an x
———— (B —tan?x) =0 %
1 —tan?x x
tanx = OQortanx = i\/§ ;o

Solutions for 0° < x < 360°:
x = 180° or 60°,120°, 240°, 300°

10 a
1 1
arctanz - arctan§ = arctana,a € QF
Taking tan of both sides:
1 1

tan ( arctanz - arctan §> = tan(arctan a)
Using compound angle formula for tan(4 — B) and tan(arctanx) = x:

1

2 23 2 3 -=a
1+zf§

_®)_1

7
TG

b

1
arcsinx = arctan7

In the diagram, angle 8 = arctan%

/Ml

7
By Pythagoras Theorem, the hypotenuse has length V12 + 72 = /50

_ 1 1
X = SIn (arctan —) = —

7/ 50

11 a

sin260 = 2sin 8 cos 0

cos 20 = cos? @ — sin? 6
sin 260

cos 260
2sinf cos @

tan 20 =

" cos26 —sin2 0
Dividing through by cos? 8:

tan 26 2tan@
an =
1 —tan?6
(> HODDER
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b
tan225° =1
Using part a, if tan 112.5° =t
2t
S 1—t?
1—-t?2=2t
t2+2t—1=0
t=-1+2
Since 90° < 112.5° < 180°, tan 112.5° < 0
Sotan112.5° = -1 —+/2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

12 Using compound angle formulae:
sin x cos (%) + cos x sin (%) + sin x cos (— %) + cos x sin (— %) = 3 cosx

V3 1 V3 . 1

—sinx +—=cosx +—sinx ——=cosx = 3cosx

2 2 2 2
V3sinx = 3 cosx
tanx = V3
T
The only solution in the given interval is x = 3
13
cosy = sin(x + y) = sinx cosy + cosx siny
cosy (1 —sinx) = cosxsiny
siny 1—sinx
Then =tany = —— =secx —tanx
cos COS X

14

cos 2x
cot2x = —

sin 2x

_ cos?x —sin®x
2sinxcosx

Dividing numerator and denominator by sin? x:

cot?x — 1
cot2x = ——

2 cotx
15 a
1 cos 2x

cosec2x — cot2x = — — —
sin2x sin2x

_1—cos2x

sin 2x
_ 2sin®x
~ 2sinxcosx
sinx

COS Xx
=tanx

0 Friaay
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b e
3n 3n 3n o
tan( ) —cosec(T)—cot(4) E
=5 -
e
- - S
16 ai
cos* 0 — sin* 8 = (cos? 6 + sin? 8)(cos? 8 — sin? 9)
=1 X cos26
= cos 20

aii

cos?6 sin?0
sin? 26 (cot? 0 — tan? ) = (2 sin @ cos 6)? ( )

sin28 cos26

P ,  [cos?6 sin®@
= 4sin“ 6 cos- @ SnZ 0 _c0529
= 4(cos* 8 — sin* 9)
b
4cos20 =2
cosZHzE
Solutions for 0 < 6 < 2
) T 5t 7m 11w
3' 3’3’ 3
0_71 n 7n 11w
6’66 6
17 a

3sinx + V3 cosx = Rsinxcosf + Rcosxsinf = R sin(x + 0)
where Rcos@ = 3 and Rsinf =+/3
R = \/Rz(sinz 0 + cos? 0)

= ﬂf\/§2 + 32
=23
Rsin@

R cos@ e
3 T
So 6 = arctan <?> =z

T
3sinx +V3cosx = 2\/§sin(x+g)

=tanf =

< &

b
T

2\/§sin(x+g) =3

. ( n T ) \/§
sin{x - )=

6 2
(> HODDER
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Solutions for — 7 < x < 7:

4 T w2

X ==, —
3" 3

6
_r
*=%

N

)

18
sin (x + g) = 2sinx sin (g)
sin x cosg + cosx sin% = 2sinx sin (g)

1. V3 . 3
—smx+7cosx = Zsmxx?

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2
V3cosx = (2\/5— 1) sinx
tanx=i
2v3 -1
_ 3(2v3+1)
~(2v3-1)(2v3+1)
6++3
T

Solltanx = 6 ++3

19 a
f(x) is not defined where sinx = 0 or cosx = 0

f(x) is not defined for x = gn for any n € Z

b
sin3x cos3x sin3xcosx — cos3xsinx

sinx COSX sin x cos x
sin(3x — x)
1 sin 2x
2
=2
Where the function is defined.

20 a
cos(x + y) + cos(x —y) = (cosx cosy — sinx siny) + (cos x cosy + sin x sin y)
= 2cosxcosy

b
By part a,
cos(2x + x) + cos(2x — x) = 2 cos 2x cos x
So 2 cos 2x cos x = 3 cos 2x
cos2x(2cosx—3) =0

3
cos2x = 0orcosx = 3 (reject)

Solutions for 0 < x < 2m:
w 37 57 7w

2'°2'2"2
m 3m 5m 7w
x = _I_’_I_
4" 4 4 4
(> HODDER
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21 a
Using compound angle formula:

3-2 1
tan(arctan 3 — arctan 2) = T33x2-7

b
Using double angle formula:

tan (2 arctan (%)) = : xl% > = ; = g
-3 @)
22

Angle above the horizontal of the line y = x is arctan 1
Angle above the horizontal of the line y = 2x is arctan 2
The angle between the lines is therefore arctan 2 — arctan 1

Using compound angle formula for tan(4 — B):
2—-1 1
tan(arctan2 — arctan1) = T32x1-3

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

23 a

) (A+B)_tanA+tanB d sotan 2x = 2tanx
an T 1—tandtanB OO = e x

tan 3x = tan(x + 2x)
tanx + tan 2x

" 1 —tanxtan2x

tanx + (2 55)

2tanx
1 —tanx(1 — tan? x)
3tanx — tan3 x
( 1 —tan?x )
1—3tan?x
( 1 —tan?x )
_ 3tanx —tan®x
1—3tan?x

b
3tanx —tan’x
1—3tan?x
(tanx — 3tan3x) + (3tanx —tan3x) = 0
4tanx (1 —tan?x) =0

tanx = Oortanx = +1
T

T
Soluti for—-—<x <=
olutions for > X >

tanx +

—Oor+—
X = Or_4

24 a
Using compound angle formula:

) T ] T o
sin (Zx + —) = sin 2x cos—= + cos 2x sin—

2 2 2
=0 Xsin2x + 1 X cos 2x
= Ccos 2x
(> HODDER
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b
- 7T — .
sin (273Tc+5) = sin 3x i
2x+E=3x+2nn0r2x+z=n—3x+2nn

=X, Sx =42
x—z nim or x—2 nm

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

T T 2nm
x=5—2nnorx—1—O+T
Solutions for 0 < x < g:

T T
X=§OFE

c

Using double angle formulae sin 24 = 2 sin A cos A and cos 24 = cos? A — sin? A and
compound angle formula sin(A + B) = sin A cos B + cos Asin B

sin 3x = sin(x + 2x)

sin x cos 2x + cos x sin 2x

sin x (cos? x — sin? x) + cos x (2 sin x cos x)

3 sinx cos? x — sin® x

= 3sinx (1 —sin?x) —sin3x

= 3sinx — 4sin3x

So
cos2x —sin3x =1 —2sin®x — 3sinx + 4sin®x

d
f(1) =4—-2-3+1=0s0(s—1)is a factor of f(s) (by the factor theorem)
fs)=(s—1)(4s?+2s—-1)

=(s—1)<25+1—§><23+1+§>

2 2 2 2
V5-1 1++/5
=4(s—1) s—( 2 ) s—(— 2 )
e
By part c,

f(sinx) = cos 2x — sin 3x
But by part b, f(sinx) = 0 when x = 1—7:),% so these solutions must coincide with the
roots of the cubic.

T
sinz = 1 corresponds to the factor (s — 1)

LT ) V5 -1
sinZo > 0 so this must correspond to the factor | s — 7
S T \/E -1
0sin—
10 4
‘ HODDER
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25 a

For even n, the furthest distance will lie between opposite vertices, which will equal the
diameter of the circle x.

The area of the shape is nT where T is the area of the isosceles triangle with equal sides

x 2
> and enclosed angle —
2

_l(x)2 ) (Zn)_x _ (27‘[)
=5(3) sin{—)=gsin|—

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Require € > 0.99
If n is even then % sin (27”) > 0.99, which from GDC has solution n > 25.6

So the least even number is n = 26

. 2T
If n is odd then &"n > 0.99, which from GDC has solution n > 20.3
i

(1+cos;)

So the least even number isn = 21

c
For both even and odd numbers of sides, compactness increases towards 1 as n
increases, so this aspect of the compactness definition aligns with expectation.
However, the differences between the odd and even values of n illustrate that this
measure of compactness is not a good one, as expectation would be for compactness to
increase as n increases but C(21) > C(26).

26 a
on(2) () = rn () e
arctan (¢ | +arctan (o) = arctan > , P
Taking tan of both sides:
1 1 1
tan ( arctan— + arctan —) = tan (arctan —)
5 8 p
Using compound angle formula for tan(A + B) and tan(arctan x) = x:
1 1
stg _1
1.1 p
1_(@)_t
p (3% 3
(70)
p=3

b B0
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b -
1,1 5 o
1 1 n_ 2t3 _(3) 5
tan (arctan— + arctan— + arctan —) = = =1 =
273 6 S
Since 0 < arctan— arctang arctan < — =arctan1, I
o
0< t ! + t + t ! < 31 =
arctan > arctan 5 arctan 5<7 )
The only angle 6 in this interval for which tan8 = 1is 6 = "
S t ! + t ! + t ! I
oarcan2 arcan5 arcan8—4
‘ HODDER
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 4A

26
Using the quadratic formula:

-6 +,/6%2—4(5)(5)

= 2(5)
_ —6+V—64
B 10
_ —6+8i
10
_ 3+4_
- T5*5!
27
10i
z=7+3i——
2+i
743 10i(2 — i)
DD
o 20i + 10
= T
=7+3i—4i—2
=5—i
z"=5+1i
28

4z — 23 = 5iz + 2i

(4 —5i)z=23+2i

(4 +5i)(4 — 5i)z = (23 + 2i)(4 + 5i)
(16 +25)z =92 — 10 + (8 + 115)i

41z = 82 + 123i

z=2+3i1

29

Letz=x+iysoz" =x—iy
3iz—-2z"=i—-4
3ix—3y—2x+2iy=i—4

Equating real and complex coefficients:
—3y —2x = —4(1)

{ 3x + 2y = 1(2)

2(1) +3(2):5x = -5

x=-1y=2

z=-1+2i

(; HODDER
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30
a+ 3i

~a-3i

_ (a+3i)?

"~ (a—3i)(a+ 3i)
B a? —9 + 6ai

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Re(z) = a’?+9
IfRe(z) = 0thena = +3
31
Letz=x+iysoz" =x—iy
(z)? = (x —iy)?
x? —y? = 2ixy
(z2)" = ((x +iy)?)
= (x? —y? + 2ixy)*
= x? — y2 = 2ixy
So (z")? = (z%)*
32
3z+iw =5—-11i(1)
{Ziz —3w=-2+4+i(2)
2i(1) — 3(2): — 2w + 9w = 22 + 10i + 6 — 3i
7w =28+4+7i
w=4+i
(1):3z=5-11i—iw=5—11i+ 1 — 4i = 6 — 15i
z=2-05i
33
{ 27 — 3iw = 9 +i(1)
1+i)z+4w =1+ 10i(2)
4(1) + 3i(2): 8z + (3i — 3)z = 36 + 4i + 3i — 30
(5+43i)z=6+7i
(5 — 30)(5 + 3i)z = (5 — 30)(6 + 7i)
(25+4+9)z =30+ 21+ (35— 18)i
34z =51+ 17i
3 1

=§+§1

1
@)mM_1+1m—(1+o( 20
=1+ 10i (3 1+(3+1)')
- RV RAVEARIA
— 8i
w = 2i

0 Friaay
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34
(1+a)(1+bi)=b—a+9i
l1—ab+(a+b)i=b—a+9i
Comparing real and imaginary parts:
{1—ab =b—a(l)

a+b=9(2)
(2):a=9->
Substituting into (1): 1 — (9 —b)b=b — (9 — b)
b?—11b+10=0
(b-1DB-10)=0
b=1or10
Solutions: a =8,b =1ora=-1,b =10
35

741 3+i

2—1i a+2i

_(T+D2+1) @B+ila—2i)
T 2- 1)(2+1) (a + 2i)(a — 2i)
13491 3a+2+(a—6)i

5 a’+4
_13(a®+4)—15a—10 9(a®* +4) —5a + 30
B 5(a? +4) 5(a? +4) !

If Re(z) = Im(z) then
13(a? + 4) —15a — 10 = 9(a® + 4) — 5a + 30
40> —10a—24=0
202 —-5a—-12=0
(a—4)2a+3)=0
3

=4or——
a or )

36
Letz=x+1iy
z2 = -3 —4i

x%—y? 4+ 2ixy = -3 — 4i
Comparing real and imaginary parts:
{xz —y%2=-3(1)
2xy = —4(2)
(2):x =2yt
Substituting into (1): 4y =2 — y2 = =3
y*—3y2—-4=0
O =-H0*+1) =0
y? = 4 or — 1 (reject)
y=x2
Then solutions are z = +(1 — 2i)
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37
Letz =x+1iy
z? =8 — 6i

x? —y% + 2ixy = 8 — 6i
Comparing real and imaginary parts:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

{xz —y%2=8(1)
2xy = —6(2)
(2):x=-3y7t

Substituting into (1): 9y™2 —y2 =8
y*+8y2—9=0
0% - DO +9) =0
y? =1 or — 9 (reject)
y=x%1
Then solutions are z = +(3 — i)
38
Letz=x+1y
z2 =x? —y? + 2ixyand z* = x — iy
Comparing real and imaginary coefficients when z2 = z*:
{xz —y?2=x(1)
2xy = —y(2)

1
(2):x = —3 ory=20
Ify=0then(1):x2 =xsox=1or0

1 1 1 3 V3
— . 2:__ 2:_. =4+
If x 2then(l).4 y S S0y =y =%—
Solutions:
1 3
z=0,1, >+ 21
Exercise 4B
30
Im
z2
[ ]
o2
.Z
» Re

31 a -2+ 2i| =/(-2)2 + 22 =+/8

3
b Imz>Osoargz—arCtan( 2)=TH
¢ |z?| = |z|* = 8
(> HODDER
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2 _ 3n 2
argz —Zargz—7 .‘g
2 _ T\ — _q; >
d z —8(cos(2)+1sm(2))— 8i =
32 cis 0.6 X cis 0.4 = cis 1 n
V3 T =
33 a Im (w) > 0 so argw = arctan (T) =3 x
1 T (]
b Im (z) > 0 so argz = arctan (I) =- =
Im(zw) = Im(z) + Im(w) = D)
T T
34 a c153xasg—c1s—=
T T _ V3 V3 1, 1+\/_
b CISE+CISZ_(E+71)+(7+EI) (1+1)
35
(n) 9 <3n) _ (n 4 3n)
cis 3 cis 7 = cis st
_ (13n>
= cis v
_ (13n) +i (13n)
= oS 2 isin 7
36

. (7n)
= cis >0

(77r) N (711)
= COS 20 isin 20

37 Letz =rcisf
Then argz = 0 and argz* = 2w — 0, if arg z is defined to have range [0,27)
Soargz +argz* =2m

38
Im z
If Re (z) > 0 then argz = arctan (R z)
(adjusting by adding 2m if necessary to ensure the argument lies in the appropriate
interval)
IfRe (z) < 0 th =+ arct (Imz)
e (z) en argz = m + arctan Re 7

b
Sowhena, b < 0: arg(a + ib) = m + arctan (E)
39
- - — - n -
icis@ = cis (E) cisf

= cis (0 + %)

0 Friaay
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For example, z; = z, =i

40 g
14it 0_c059+isin9 ()
Hant = cos @ =)

= secB cis O >

41 o
)

X

[

)

=

s
Then argz, = argz, = arg(z, + z,) = >
Soargz; +argz, = m # arg(z; + z,)
42

ol = lellwl = J(~4Z)" + (42" =

w1 = |zllwl 12 + (V3)’ =

zZw
Then | —
zZw

|=4=|wlzso|w|=2and|z|=4

)T

T
arg(zw™1!) = argz —argw = arctan( 7 ) 3

s
arg(zw) = argz + argw = > + arctan (

3t m™ 57 5n 137w
) =2argw = ———=-——soargw = — andargz =

ZW
Ther“"rg(zw-l 43 12 24 24

43
Tip: Two methods are offered; the first is brute-force and long.
The second uses a more intelligent argument to reduce the amount of algebra required.

Always look for a fast solution, but be sure to make your explanation clear!

Method 1: Algebraic
|z| =+4/6%2+82=10
Letw = u + iv, so that u? + v2 = 25, from which u? = 25 — v? (%)
lz+w| =(6+u)?+(8+v)?2 =15
(6+u)?+ (8+v)? =225
36 + 12u + u? + 64 + 16v + v? = 225
12u + 16v + u? + v2 = 125
12u+ 16v =100
3u=25—-4v
Squaring and then substituting (*):
= (25 — 4v)? = 9(25 — v?)
625 — 200V + 16v? = 225 — 9p?
25v% — 200v + 400 = 0
v2—-8v+16=0
v—4)2=0
v=4sou=3
w=3+4i

0 Friaay
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Method 2:
For any two complex numbers, |z + w| < |z| 4+ |w| by the triangle inequality.
Equality occurs only when 0, z and w are collinear, that is, when w = kz for some non-
negative real value k.
|z| = /62 +82 =10
Since |w| = %Izl, it follows that if w = kz for some k € R*, then w = %Z
Hence w = 3 + 4i
44 a

1 _(cosx—isinx)>< 1
cosx +isinx (cosx —isinx) ~ (cosx + isinx)

(cosx —isinx)

)
c
9o
whd
=
(e)
o
o
)
X
[
=

cos? x + sin? x
= cosx —isinx
b
lz] =1
From part a,

§= Re (z) — Im (2)

1
|z| + — =2Re (2)

|z
45 a
All points a distance 2 from the origin:
Im
[
:
/QT =27 |
I —K& /2 -

—4

b All points on the half-line at angle 30° from the origin. Note that the

origin is not included, since argument is not defined for z = 0.
Im

4

—4 -2 2 4
-2
—4
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c Since Re (z) is given on the x axis and Im (z) is given on the y axis, this
is the curve y = x2 on the Argand diagram.
Im

\L

—4 _.2 % 4
| (Re(:))? =Tmn(z)

46

|z —5i]| =3

The distance of z from the point 5i on the Argand diagram is 3.

The point on this circle closest to the origin (with least modulus value) is z = 2i so
|z| = 2.

47
1+e2ix_1+c052x+isin2x
1—e2* 1 —cos2x —isin2x
_1+c052x+isin2xx1—c052x+isin2x
" 1—cos2x —isin2x 1 — cos2x + isin2x
_ (1 +isin2x)? — (cos 2x)?
"~ (1= cos 2x)? + (sin 2x)?
1= sin? 2x + 2isin 2x — cos? 2x
" 14 cos?2x — 2 cos 2x + sin? 2x
_ 2isin 2x
"~ 2 —2cos2x
4isin x cos x
"~ 4sin2x
icosx
"~ sinx
=icotx
48 ai
- [ ) - e
W2 V2/ 22

Rez >0 = arct <_): tanl = —
ez SO argz = arctan Re 7 arctan 2

aiii

Imz i

IWI=4/12+(\/§)2=\/1+3=2

0 Friaay
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aiv g
Rew >0 = arct (Imw)— tany3 = = 2
ew So argw = arctan Rew = arctan =3 E
[}
TS
| | |W| o
2 == o
|Z| x
arg( )—argw—argz=£ ;o
z 12
SoK =2 c1s£
z 12
c
w 1+iV3
z 1 .1
V2 V2
1+iV3
-2 (557)
1+i
_ (V3 1
B 1+i ~ 1-i
VZ(1+V3+i(v3-1))
h 2
143 N V3-1
= i
V2 V2
V2+vV6  V6—12
= +1
2 2
d
From part b Y_ (cosl +isin i)
part b 12 12
Equating the real part with the result in part c,
m  1(V2+V6\ V2++6
ST\ 2 )T s
49
Letz=x+1iy
VX2 +y?+x+iy =8+4i
Comparing real and imaginary parts:
{\/xz +y2+x=8(1)
y = 4(2)
(1):y/16+x2=8—x
Squaring: 16 + x% = 64 — 16x + x?2
16x = 48
x=3
z=3+4i
‘ HODDER
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50 a

Letz =x+1iy
Vx2+y? = - 1)? +y?2
x2+y?=x%-2x+1+y?

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1
= R = —
X e(2) 5
b
Im
1
4
2
Re(z) = 1
—4 —2 2 4 Re
=
-4

2T

51 a Each other point is found by rotating w repeatedly through 120° = 5

radians.
2im
If one vertex is z; = w then the other two vertices are z, = we 3 and
4im
Zz =wes
b The length of a side equals
2im
zZy — Zy| = |W(1 - eT)
— wl |1 2 27
= |w cos —-—isin
_ twl 3 3
LA PR
— Wl 9 4 3
AN R
= |wlv3
52
3i — (eln 3)1
= eiln3
= 1cis(In3) .
53 a i=ezsoil=ez€R
b Using the approximatione ~ 7w ~ 3,i' = 3715 = 0.2
54 a —2 = 2el"
b In(—2) = In(2e™) =In2 +in
‘ HODDER
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55 a i=ez2
b Ini ==
2
c The argument is not unique; more generally, i = e’ ( *2 n”) forn € Z

Solni = 1(§+2nn) foranyn € Z.

56 a Re (1)) = Re (e* cis x)
=e*cosx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
jex sinx dx = J Im (e(l“)x) dx

=Im fe(”i)x dx

Im( 1 e(1+1)x)

141
- (1_‘ X )
=Im (——e*cisx
ex
=?(sinx—cosx)

In the above calculation, we are treating i as a constant value and integrating the function
accordingly. This may seem naive and inappropriate, but in fact the approach is valid in this sort
of simple example, and can offer a tidy and rapid method for integrating otherwise awkward
functions.

You could achieve the same result here, albeit at greater length, using integration by parts twice;
see Chapter 10 for this method.

57 a
k=n k=n

C = coskf and S = Z sin k@
k= =0

cos k@ + isin kO = etk?

=n
SoC+iS=Zeik9
k=0

This is a geometric series with common ratio e'® and first term 1.

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 11

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



b
Using the formula for the sum of a geometric series, noting that the sum given contains

n + 1 terms:

1— ei(n+1)9
CHIS =g
_1- cos((n + 1)6) — isin((n + 1)6)
a 1—cos@ —isinf
_1—cos((n+1)8) —isin((n + 1)6) y 1—cos@ +isinf
B 1—cosf —isinf 1—cosf +isinf
_ (1 =cos((n+ 1)B) —isin((n + 1)6))(1 — cos 6 + isin H)
B (1 —cos6)? +sin?6
B (1 - cos((n + 1)6) — isin((n + 1)9))(1 —cosf +isinf)
a 1+ cos26 +sin26 — 2 cos @
C =Re (C +1iS)
(1 =cos((n+1)8))(1 — cos ) + sin((n + 1)8) sin6
B 2—2cos0
1 —cos@ — cos((n + 1)8) + [cos 8 cos((n + 1)) + sin((n + 1)6) sin 0]
B 2—2cos6
_1—cosf — cos(n + 1)8 + cos((n + 1)6 — 6)
B 2—2cosf
_ (1 —cos8 + cosnd —cos((n+1)0)
- 2 —2cosf
58 a z=i+=
w
b
z=x+iywherex? +y? =1
4 4(x+i1 —y))
w = - =
z—i (x+ily-D)(x+i(1-y))
_ -y o 40—y _40-y)
Im(w) =

x2+(y—1)2 x24+y2—-2y+1 2-2y
(Solution fails if y = 1,x = 0 so that z = i but in that case w is not defined)

59
Im
4
2
Re(z) = %
—4 -2 2 4 Bz
-2
—4
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Exercise 4C

13 a

If x = 2 is aroot then (x — 2) is a factor of p(x)

p(x) = (x — 2)(ax? + bx + ¢) = x3 — 8x% + 22x — 20
Comparing coefficients:

x3:a=1

x?:h—2a=-8sob=2a—8=-6
xlic—2b=22soc=2b+22=10

x%: —2c = —20is consistent

p(x) = (x — 2)(x%? — 6x + 10)
b

Using the quadratic formula:

x=2o0r3+i

14 a

If x = —2 is aroot then (x + 2) is a factor of p(x)
p(x) = (x + 2)(ax? + bx + ¢) = x3 — 8x% + 9x + 58
Comparing coefficients:
x3:a=1
x>:b+2a=-8sob=-8-2a=-10
xl:c+2b=9soc=9—-2b=29
x%: 2c¢ = 58 is consistent
p(x) = (x + 2)(x? — 10x + 29)

b
Using the quadratic formula:
x=—-2or5+2i
15 a
p(x) =Q2x—1)(ax®*+bx+c)=2x3+7x2+8x—6
Comparing coefficients:
x3:2a=2soa=1
x?:2b—a=7s0b=05(7+a)=4
x1:2c—b=8s0c=05(8+b)=6
x%: — ¢ = —6is consistent
p(x) = 2x —1)(x%? + 4x + 6)

b
p(x) = 2x — D(x + 2 +iV2)(x + 2 — iV2)
So the solutions to p(x) = 0 are x = %, —2+iV2

16 a
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 1 — 4i is a root, 1 + 4i is also a root.
b
x3+x2+11x+51=alx —1+4))(x—1—-4i)(x—2)
=a(x®>-2x+17)(x — 2)
Comparing coefficients:

x3:1=a

x>:1=a(-z—-2)soz=-3

x1:11 = a(17 + 2z) is consistent with z = —3

x°:51 = —17az is consistent with z = —3

The third linear factor is (x + 3) so the third root is x = —3.
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17 a p(3i) = -271—36 +27i+36 =0
b For a polynomial with real coefficients, complex roots occur in conjugate
pairs
So, given 3i is a root, —3i is also a root.
p(x) =x3 +4x?>+9x + 36 = a(x — 3i)(x + 3i)(x — 2)
=a(x?+9)(x —2)
Comparing coefficients:

x3:1=a

x*:4=—azsoz=—4

x1:9 = 9a is consistent with a = 1
x°:36 = —9az is consistent with z = —4

The third linear factor is (x + 4) so the third root is x = —4.
The three roots are x = +3i, —4
18 a p(x) =x*+3x3—x2—-13x—-10 = (x + 1)(x — 2)(ax?® + bx + ¢)
= (x? —x—2)(ax?® + bx +¢)
Comparing coefficients:
x*:1=a
x3:3=b—asob=4
x?:—1=c—b—-2asoc=5
x1: =13 = —c — 2b is consistent with b = 4,c = 5
x%:—10 = —2c is consistent withc = 5
p(x) =(x+1D(x—2)(x*+4x+5)
b
p)=(+DEx-2)x+2+i)x+2-1)
The roots are —1,2,—2 + i
19 a
p(x) = x* —3x3 + 8x — 24
—2 and 3 are roots, so (x + 2) and (x — 3) are factors of p(x)
p(x) =x*—3x3+8x—24=(x+2)(x —3)(ax? + bx + ¢)
= (x?—x—6)(ax?+ bx + ¢)
Comparing coefficients:
x*:1=a
x3:—3=b—asob=-2
x>:0=c—b—6asoc=4%
x1:8 = —c — 6b is consistent with b = —2,¢c = 4
x%:—24 = —6c is consistent with ¢ = 4
p(x) =(x+2)(x —3)(x* —2x + 4)
=((x+2)(x— 3)(x -1+ i\/§)(x -1- i\/g)

The other two roots are 1 + iv/3

b
p(x) =(x+2)(x — 3)(x -1+ i\/§)(x -1- i\/g)
20 a For a polynomial with real coefficients, complex roots occur in conjugate
pairs
So, given 2 + 5i is a root, 2 — 5i is also a root.
b
If 2 + 5i and 2 — 5i are roots then (x — 2 — 5i) and (x — 2 + 5i) are factors of the
polynomial

x* —4x3 +30x%2 —4x+29 = (x —2 = 51)(x — 2 + 5i)(ax? + bx + ¢)
= (x? —4x + 29)(ax? + bx + ¢)
HODDER
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Comparing coefficients:
x*:1=a
x3:—4=b—4asob=0
x?:30=c—4b+29asoc=1
x':—4 = —4c + 29b is consistent with b = 0,c = 1
x°:29 = 29c¢ is consistent with ¢ = 1
p(x) =2 +5)(2-5)x%+1)
=2 +5)@2 -5 —1)(x+1i)
The remaining two roots are +i

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

21 a For a polynomial with real coefficients, complex roots occur in conjugate
pairs
So, given 2i is a root, —2i is also a root; also, if 4 — i is a root then so is 4 + i.
b

x*—8x3+4+21x%2-32x+68=(x—-2D)(x+2D)(x —4+D(x—4—1)
=(x?+4)(x?—-8x+17)
22
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 4 + i is aroot, 4 — i is also a root.
Polynomial is
px)=x—-3)(x—4-1)(x—4+1i)
=(x—-3)(x*-8x+17)
=x3—11x2 + 41x — 51
23
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 3 — 3iis aroot, 3 + 3i is also a root.
Polynomial is
f(x) = (x+ 1)(x — 3+ 3i)(x — 3 — 3i)
=(x+1)(x? — 6x + 18)
= x3 —5x% + 12x + 18
b=-5c=12,d =18
24
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 4i is a root, —4i is also a root; also, if 2 — 3i is a root then so is 2 + 3i.
Polynomial is
p(x) =alx —4i)(x +4i)(x — 2+ 3i)(x — 2 — 3i)
=a(x?+16)(x? — 4x + 13)
= a(x* — 4x3 + 29x? — 64x + 208)
where a is any non-zero real value.
25
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 3i is a root, —3i is also a root; also, if 2 — i is a root then so is 2 + i.
Polynomial is
fx) =(x—-3D)(x+3)Dx—-—2+i)(x—2—1)
=(x?+9)(x?—4x+5)
= x* — 4x3 + 14x% — 36x + 45
b=—-4,c=14,d = —-36,e =45

b B0
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26 2
x*+13x%2+40=0 [e)
x2+5)(x2+8)=0 5
x>=-50r—8 >
x = +iV5or +i2v2 :
27 X

()

=

A simple example would be ix? +i =0
The roots are +1i, but the coefficients are all complex.

An example of a polynomial with some, but not all, complex coefficients where all
complex roots have conjugates which are also roots can be made by asymmetrically
repeating roots (this breaks the notion of exclusive ‘pairs’ of complex conjugate roots,
but that exclusivity was not mentioned in the question).

So, for example, (x —1)?(x + i) = 0 has roots +i, but has expanded form x3 — ix? +
x—1i=0

Exercise 4D
9 a

|2 —2i| =22 + (-2)2 = 2+/2

2 T
Re (2 — 2i) > 0 so arg(2 — 2i) = arctan (— E) =—7
L - n
z=2-2i= 2\/§c1s(—z)
b
5 5t
z% = (2V2) cis (— T)
1
= 1282 (——+— )
AP
= —128+ 128i
10 a
2
V3 +i| = /(x/§) +12=2
1 T
Re (V3 +i) > 0so arg(V3 +i =arctan<—) =—
(V3 +1) > 050 arg(V3 + 1) =)=
L - n
z=V3+i= 2c1s(g)
b
3n
s-era(-
i )7 cis e
=3 (=1
1
‘ HODDER
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11 a

|—Vz-iv2| = \/(—\/5)2 +(—v2) =
-2 5t

Re( V2 — 1\/_)<Osoarg(2—21)—rt+arctan< >_—

—\2 4
W=—\/§—i\/§=2cis<¥)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
307 4
6 _ — (2 = _gai
we =2 ;IS( 4) 64c1s( 2) 64i
R _ 7 — i ——
z = cis (7) SO Z cis(m) 1
Then wz7 = 64i
12 a

z6 =1 =1cis(2nn) forn € Z
1
Then z = (1 cis(2nm))6
— {ci <2nn)
=lcis|— 2
. . 7T . 7T .
= cis 0, cis (i §) ,Cis (i ?> , cis(m)
1 3
=x1,£(-% £i
27 2
b
Im

22 21

23 il

24 25

13 a

z* = —16 = 2*cis(m + 2nn) forn € Z
1

Then z = (2% cis(m + 2nm))*

P <n+2nn>
= 2cis 2

= 2c1s( Z) 2 cis <+SZT7T)

=2 +V2ior—v2 +2i

0 Friaay
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b (72)
I 5
[ -
=
()
(7))
29 21 g
x
—
(]
= RE =
V2
23 24
14 a

T .
73 =8i= 23e(7+2"”)l forn € Z
1

Then z = (23e(%+2"”)i)§

T+ANT).
= Ze( 6 )l
= 2e6,2e 6 ,2e 2
b
Im
L
23 2
= Re
2
%3
15

Five evenly spread vertices must represent fifth roots.
5

(-iv3) =w = (-9V3)i

Son = 5w = (—9V3)i

b B0
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16

|1-iv3| = /12 +(=V3)’ =

Re (1 — i\/§) > 0so arg(l - i\/§) = arctan <_T\/§> __r

3
So 1—iV3 = 2cis(—%)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

17
I3 —3i| =+/32 + (—3)2 =32

-3
Re (3 — 3i) > 0 so arg(3 — 3i) = arctan (?)

So w=3—3i=3\/§cis(—%)

Then w* = (3\/5)4 cis(—m) = —324
. (Sn) 6 <9n) 1 N 1 .
z = cis|—) so z® = cis =—+4+—i
8 4 V2 W2

Hence w*z = —162v2 — (162V2)i

18

— i 7 _on nm
z= c1524soz c152§
For this to be a real number, o4 EZ

The least value n € Z* under this condition is n = 24.

19
5t _ b5nm
zZ= c1s18 so z™ = cis 8
i=cis (§+ 2k7‘[) forany k € Z
R on 1ok
equire )
5n =9+ 36k
The least suchn € Z* isn = 9, with k = 1.
20 a w® =1, w, w? w3 wt w’,wt

b No such integer k exists; the Argand diagram of w* cycles through the
values given in part a.
Alternative reasoning — proof by contradiction: Suppose k € Z such that w* = —1.
Then w?* = 1.
w?* = w”™ for some integer m
2k = 7m(*)
Both sides of () are integer values. Since 2 is not a factor of (prime number) 7, it
follows that 7 must be a factor of k and m must be even. But then k = 7n for some
integer n.
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So w* = w’™ = (1)™ = 1 which contradicts the assumption.
Conclusion: There is no integer k for which w* = —1.
c w?*=wlxwl=(0)2xw=13%xwd=w?

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

p

d (w?)* = w® from the Argand diagram of powers of w.
m

a

21 w® =1
1-w)(1+w+w?+ 0+
=1l+w+w?+w+o*—(0+w?+w+ow+wd)
=1+w+w?+w+w
—(w+w+wd+wt+1)

=0
Since w # 1, it follows that 1 + w + w? + w3 + w* =0
b
Letw = ci (2”)
etw = cis (¢

2km
Then w* —c1s< z )

2r 4 é6n 8r
cos <?> + cos (?) + cos (?) + cos (?) = Re (w + w? + w3 + w*)
= Re (—1) (by part a)
=-1
22 a
z3 =1 =cis(2nn) forn € Z
. (Zmr) 1 V3,
z=cis|l—|=1—-—=+—i
3
b
(z—1)% = (z + 2)°

2nm
z—1= (Z+2)CiS<T)

1 .(th —142¢i 2nn)
(- s (B)) = 1+ 20t (2

n = 0 leads to no solution; reject.

n=1:z<E—£1> 1\/_:32—1\/_< +£1> 3+1§i

2 2 2 272
3 V3. V3 3 33,
n= —1.z<§+71> =-iV3=3z= —1\/_<——71> _E_Tl
Solutions:
_1,V3,
zZ = > > 1
(> HODDER
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23 @
2 O
|z%| = /22+(2\/§) =4 =22 E
[
23 m n
Re (z*) > 0 so arg(z*) = arctan - S
2 )73 )
T =
z4=4cis(§+2nn) forn€Z ;C’
T+ énm
Then z = V2 cis (T)
7im 5im 11im
z—\/_e12\/_e12 V2e 1z,V/2e7 1z
24
2
|25 = \/162 +(—-16V3) =32 =25
-163 T
Re (z°) > 0so arg(z®) = arctan( G ) =-3

T
5 _ 95 a1
z°> =2 c1s( 3+2n7t) forn € Z

. ([—m+o6nm
Thenz = 2cis <T)
sim 11lim  17imr  23im  29im
z=2e15,2e 15 ,2e 15 ,2e 15 ,2e 15
25
2 2
261 = {(#V2) + (~42) = 8= 2
—4\/7 T
Re (z°) > 0 so arg(z® =arctan< >=——
() 8(z") )=
T
6 — 93 uof_"
z° =2 c1s( 4+2nn)8fornEZ
—1T + 8nm
Then z = V2 cis (—)
24
VA
17w 157 231
=\/§cis( )\/_c1s<——) \/_c1s<——) \/_c1s< )\/_as( )\/_c1s<24)
26

n = 4, since there are four points evenly spread about the origin to form a square.
The first vertex has corresponding complex number 3 + 3i
z* = (3+3i)* = (18i)? = —324

w = —324
27 a
w’ =1

(w—1DA+ w+ w?+ o+ w?)
=w+twt+od+tot+0’-1+w+ 0+ 0+t
=w+w+0i+wt+1
-1+ o+ w?+ 0+ w?
=0
Since w # 1, it follows that 1 + w + w? + w3 + w* =0

0 Friaay
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w3 = cis (6?”) = cis (— 4?”) = (w?)*

4 8m ) 2m §
w* = c1s( z ) = c1s(—?) =w
So Re(w?) = Re(w?) and Re(w*) = Re (w)
From part a, Re(w + w? + w® + w*) = Re(—1) = -1
2(Re(w) + Re(w?)) = —1

Re(w) + Re(w?) = —%

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

C

(271) N (411) 1
cos = cos{=)=-75
Using double angle formula:

<2n>+2 2(271) = 1
cos z cos z =3

5 2<2n>+ (271) 1_0
cos z cos z 5=

Quadratic formula gives

(271) “1+Vi+4 -1++5
COoS =

5 4 T4
(271') >0 (Zn) —1+4++/5
cos z SO coSs 3
28 a

z3 = —1 = cis(r + 2nn) forn € Z
. (ﬂ+2nn)_ 1 ci (+n)
Z = cis =—Lds(t3

3
b
(x+2)2=x3+6x*>+12x+38
9)
z+2)3+1=0
(z+2)P=-1
1 V3
z+2 101‘(2_21)
3 V3
A 3or< 2_21>
29 a
74

= —4 =4cis(r + 2nm) forn € Z

T+ 2nm
z =2 cis (T)

-7(+(G5 )

=1+4i,—-1+i

0 Friaay
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5]

b

zt = —4(z-1*

z=(z—1)Xwwherew=1xior—1+i
w w

Z=_1—w=a)—1

1+4i 1-i -14i1i -1-i
Z=—— 0r—— or - or -

i —i —2+i —2—1i

L—iorlti 1+D(=2-1) (-1-D(2+1)
=1-—ior ior or

(-24+1)(-2-1) (-2-1D(-2+1)

1 —iorl+i 3—i 3+1i
= ior ior z or z
30 a

|-32v2 +i32v2| = \/(—32\/5)2 +(32v2)" = 64 = 43

Re (—32V2 +i32V2) < 0 s0 arg(— 32\/_+132\/_)—ﬂ+arctan<

322 3
ARE:

322
3 3 . 3n
Soz® =4°cis (—4 + Znn) forneZ

Th — 4ci <3n+8nn)
en z = 4cis 1

—4c (371) 4 117r) Aci (1971)
= 4 CIS 12 , CIS(12 CIS 12

C

c
Leta = 4cis ( ) and f = 4cis ( ) = acis (%ﬂ) , the values corresponding to

points A and B, so a® = —32v2 + 32\/_1 .
1 a . (2w
w=-(a+p)= ;(1 + cis (—))
= (e sen(F) esas() v es(3))
w 3 cis 3 cis 3 cis{ 3

—32v2 4 32/2i
= 3 (1+3w+3w2+1)

Where w is the first of the three roots of unity
Butw+ w?+1=0s02+ 3w +3w?=-1

w3 = 42 — 4+/2i
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Exercise 4E

1 a

Using binomial theorem:

(cos@ +isinB)3 = cos® 0 + 3icos? Osinf — 3 cos O sin®> O —isin3 6

Re (cos @ +isin8)3 = cos® 0 — 3 cos O sin?

b

But by De Moivre’s theorem:

(cos @ + isin8)3 = cos 36 + isin 30

Re (cos @ +isin0)3 = cos 30 = cos® 6 — 3 cos O sin?
= cos36 —3cosB (1— cos?6)
=4cos30 —3cosH

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2 a

Using binomial theorem:

(cos 8 +isin8)*

= cos* 0 + 4icos® 0 sin@ — 6 cos? O sin?  — 4icos O sin O + sin* H
Im (cos@ +isin@)* = 4cos30sinh —4cosfsin0
b

But by De Moivre’s theorem:

(cos 8 +isin8)* = cos 46 + isin 46

Im (cos@ +isin@)* = sin46 = 4 cos® O sin@ — 4 cos O sin> O
= 4sin 6 cos 0 (cos? 8 — sin? )
= 4sin6 cos O (1 — 2sin?H)
= 4cos @ (sinf — 2sin3 )

3
el = cos@ +isinb (1)
So e % = cos(—0) +isin(—0) = cosf —isinf (2)
0 i 0i0 4 a—i0
a (1) +(2):2cosf =e'" +e7'% = cosh = -
oif_g-i6

b (1) — (2):2isin@ = el — e = sing =

4 a
Using binomial theorem:
(cos @ + isin 8)°

= cos® 0 + 5icos* O sin@ — 10 cos® 6 sin? § — 10i cos? O sin3

+ 5cos@sin* 0 +isin® 6
So Im (cos @ +isinB)> = 5cos* @ sinf — 10 cos? O sin® O + sin>
But by De Moivre’s theorem:
(cos @ +isinB)® = cos 50 + isin 50
Then Im (cos 8 +isin8)° = sin56 = 5 cos* O sin @ — 10 cos? O sin> O + sin® O

= 5(1 —sin?8)?sin® — 10(1 — sin? §) sin 9

2i

+ sin® 6
= 16sin> 0 — 20sin® 6 + 5sin 8
b
Ifsin50 = —4sin® 6
Then 20sin® 6 — 20sin®8 + 5sinf = 0
5sin6 (4sin*0 —4sin?6 +1) =0
5sinf (2sin?0 —1)2 =0

1
sinf =0or+—

0 Friaay
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5 a

If z = cos 6 + isin @ then z™ = cos(n@) + isin(nf) by De Moivre’s theorem

So z" + z7™ = cos(nf) + isin(nf) + cos(—nh) + isin(—nb) = 2 cos(nh)
b

cos* @ = (cos 9)*

(z+z ! *
S\ 2

1
=1—6(z4+z‘4+4zz+4z‘2+6)

1 z4+z‘4+4(zz+z"2)+3
8 2 2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= %(cos(ll-g) + 4 cos(26) + 3)

C
13

T 1 (%
f cos* 6 do = §f cos(40) + 4 cos(20) + 3 do
0 0

1 4
== [— sin(46) + 2sin(260) + 39]
8la o
_1 <0+2+3”) 0
-8 4
_37‘[+8
32

6 a

If z = cos 6 + isin @ then z™" = cos(n@) + isin(nf) by De Moivre’s theorem

So z" — z™™ = cos(nf) + isin(nf) — (cos(—nb) + isin(—nh)) = 2isin(nh)
b

sin® @ = (sin 0)°

z—z71\°
-(50)

1
= ﬁ(z5 —523+10z—10z"1 + 5273 —z7°)
1 <25 —z7> (z3 —z73) (z - z_l))

BT U A T T

1
= 1—6(sin 56 — 5sin36 + 10sin9)

C

SIE

TC
1 (2
sin® 6 do =Ef sin50 — 5sin36 + 10sin 6 dé

T
5 i
16 [——cos 56 +§cos 36 — 10 cosH]0

|

1 ( 1 N 5 10)
16 5 3
_ 1 (128)
~ 16\ 15
(> HODDER
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8
15

7 a
If z = cos 6 + isin 0 then z" = cos(n@) + isin(nh) by De Moivre’s theorem
So z™ + z7™ = cos(nB) + isin(nh) + (cos(—noh) + isin(—nh)) = 2 cos(nfh)

z+ 27 1\°
3200569=32< )

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2
1
= E(ZG +6z* 4+ 1522+ 20+ 15272 + 62z7* + z79)
z® + 276 (z*+z7% z?2 +z72
= > + > + 15 > + 10

= cos 608 + 6¢cos460 + 15cos 20 + 10
A=6,B=15C =10
b

T

2
j cos® 0 do ——J (cos 68 + 6 cos 48 + 15 cos 26 + 10) db
0

T

6 15
=3 [6sm69 + 451n4t9 + > sin 26 + 100]0
1
= 3—2((0 +5m) — (0))
5t
T 32
8 a
Using binomial theorem:
(cos @ + isin 8)°
= cos® 0 + 5icos* O sin@ — 10 cos® 6 sin? § — 10i cos? O sin
+ 5cos8sin* 6 +isin® 6
So Re (cos 0 +isin0)® = cos® @ — 10 cos® 8 sin? O + 5 cos O sin* 6
But by De Moivre’s theorem:
(cos @ +isinB)® = cos 50 +isin 50
Then Re (cos 8 + isin8)° = cos 50
= co0s®> 0 — 10 cos3 0 sin® O + 5 cos O sin* 0
=c0s°0 —10cos® 6 (1 — cos? 8) + 5cos O (1 — cos? §)?
= 16c0s>0 — 20cos3 0 + 5cos b
b
16x5 — 20x3 + 5x = —1
First, looking for roots with values —1 < x < 1 so that x = cos 6 for some 6 € [0,27)
By part a,
cos560 = —1
So50 =+ 2nnforn€Z
m 3r 7w 97w
= —’—’ﬂ‘—’—
5°5 5°5
Then x = cos 8 = 0.809,—-0.309,—1

0 Friaay
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5]

Considering roots outside this interval:
d
a(léxS —20x3 + 5x) = 80x* — 60x% + 5> 0for|x| > 1

So the curve cannot turn and pass again through —1.
The three roots given are therefore the only roots to the equation
16x°> —20x3+5x+1=0

There are several ways to argue that only roots which can be expressed as x = cos 6 need to be
considered, but to have a rigorous answer some such argument should be made.
9 a
Using binomial theorem:
(z+z 10 =2°4+62z*+1522+20+ 15272+ 62"*+2z7°
(z—z 10 =2°—62z*+1522—-20+ 15272 —-6z"*+2z7°
b
If z = cis 6 then by De Moivre’s theorem, z™* + z™" = 2cosnf and z" —z7" =
2isinné

cos® 0 +sin® @ = z+z7 6+ 2=z’
2 2i
B 2427 1N\° [z—z1\°
B 2 2
1
= a(lZz4 + 40 + 12z *)(by part a)

1 324+z_4_|_5
8 2

1
=§(3cos49 +5)

10 a
(cisx)® = cos® x + 5icos* x sin x — 10 cos® x sin? x — 10i cos? x sin3 x
+ 5cos x sin* x + isin® x
= (cos® x — 10 cos® x sin® x + 5 cos x sin* x)
+i(5 cos* x sin x — 10 cos? x sin® x + sin® x)
b
By De Moivre’s theorem, (cis x)> = cos 5x + isin 5x
Equating imaginary parts,
sin 5x = 5 cos* x sinx — 10 cos? x sin3 x + sin® x
=sinx (5cos*x — 10 cos? x (1 — cos? x) + (1 — cos? x)?)
=sinx (16 cos*x — 12 cos?x + 1)

c
From part b:

~ sinbx

lim — —11m(16cos x—12cos?x+1)=16—-12+1=5
x-0 sinx  x-0

11 a

cos 30 = Re (cis 36)
= Re ((cis 8)3)(by De Moivre's theorem)
= Re (cos® 0 + 3icos? 8 sin@ — 3 cos O sin? § — isin3 G)
= cos36 — 3 cosHsin? b
= cos30 — 3 cos O (1 — cos?8)
=4cos®0 —3cosb
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b
If x = cos 6 then 8x3 — 6x — 1 = 2cos 36 — 1 by part a
2cos30—-1=0

30 ==
cos >

T
30 =+—+42nm

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

0=—,—or—

9°9 9
The original cubic can have at most 3 roots; since the above finds three different
solutions these must be the three roots.

T 5w 7
The roots are x = cos (5) , COS (?) or cos (?)

12 a
By the binomial theorem:
(cos @ + isin 8)*
= cos* 6 + 4icos3 0sin 6 — 6 cos? 6 sin? @ — 4icos O sin O + sin* 9
Re ((cos 8 +isin8)*) = cos* 8 — 6 cos? O sin?  + sin* 6
Im ((cos 8 + isin8)*) = 4 cos3 O sinf — 4 cos @ sin® 6
b
By the De Moivre theorem, Re ((cos 8 + isin8)*) = cos 46 and Im ((cos 8 +
isinf)*) = sin480
Im ((cos 8 + isin 8)%)
Re ((cos @ +isin 6)*)
4 cos®0sinf — 4 cosOsin30
" cos* 0 — 6cos? 0 sin? 0 + sin* 6
Dividing numerator and denominator by cos* 6:
4tanf — 4tan3 6

1—6tan?60 + tan* 8

Sotan46 =

tan 40 =

c
x*44x3 —6x>—4x+1=0
1—6x% 4+ x*=4x —4x3

1—6x% + x* B

4x — 4x3
Letx = tané
Then, using part b: tan46 = 1

T (1+4n)m
40 =Z+nn=T forneZ
g - 1+ 4n)n m 57 9w 137w
16 T 16’16’16’ 16

The four solutions to the quartic are

" (n)t (57r)t (911) X (1311)
x = tan 16 an 16 an 16 or tan T

0 Friaay
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Mixed Practice g
1 . =
1 a zy =-7=-i 5
b z,=(1+DQ2—i)=3+i S
c Z3 =2z, =3—1 o
Im g
4 o
B =
9
° 2
") 2 7 i Be
21 e ® 23
-2
—4
2

x2=2x+2=(x—-12?+1
=x-1+Dx—-1-1i)
x=1+%i
3
x?—6x+12=(x—-3)*+3
= (x-3+iV3)(x -3 -1V3)

x=3+iV3
4
_1+i
=152
1+i 1-2i
= - X :
1+2i 1-—-2i
_3-i
T 5
3 1
=—-—=I
5 5
*_3+1
Z—5 51
5

For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 1 + 2iis aroot, 1 — 2i is also a root.

(x—1-2D)(x—1+2i)=0

x2=2x+5=0

b=-2,c=5

b B0
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—=1+4+2i
z+1

z=14+2)(z+1)
z=z+2iz—-2+1i

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2iz =2 —1
— 1 3
z = > i
7
z+i=2z"

letz =x +iywherex =Re (2),y =Im (2)soz* = x — iy
x+ (y+1i=2x—2iy

Comparing real and imaginary parts:

x=2xsox=0

1
y+1=—2ysoy=—§

— 1.
zZ = 31
8
z+4i=

Let z = x + iy where x = Re (2),y = Im (2)
x+yi+4i=—-y+ix
Comparing real and imaginary parts:

X ==y (D
y+4=x (2)
Substituting (1) into (2):
yt+4=-y
y=-2,x=2
z=2-—2i

9

a
lz| =12+ 12 =2

Since Re z > 0, arg z = arctan G) = %

b
T 3w
_ . - 6= . ) — g
z—\/2c1z(4) S0 Z 8c1s(2) 8i
T
w = cis (?) sow® = cis(3m) = —1

Then z®w5 = 8i
10

|z] = /22 + (—2)2 = 2V2
Since Re z > 0, arg z = arctan (_72) = _%
Then

1z)] = (2v2)” = 16V2Z
arg((2)%) =

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 30

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



11 a e
Comparing real and imaginary parts: .g
=3 =
p " 8
4qg =12s0 q = > B
b =
fp=a+ibandg=p =a—1ib ;o

ai—b+4a—4ib =2+ 3i
Comparing real and imaginary parts:
4a—b =2 @Y

a—4b =3 (2)

1
4(1) = (2):15a=5so0a =3

2
(D:b=4da—2=—3
_12. 1 2
P=373417373!
12
Letz3 = —1 = cis(m + 2nn) forn € Z
. (T +2nm
Then z = cis (T)
T 5t
= cis (5) ,cis(m) or cis <?>
1 V3
ZEiTiOY—ll . | |
2mi ami omi emi
13 a 1,z =¢€5,2,=22=¢€5,23=2z, = €5 ,2,=2{ = €5
b
Im

A
N

. . . . 1 3.
14 a cis (E) =+ CIS (E) = cis (E - E) = CIS (E) =-+ £1
2 6 2 6 3 2 2
. . . 3 1, 3 1,
b c1s(—)—c1s(z)=1—(£+—1)=—£+—1
6 2 2 2 2
(> HODDER
7 EDUCATION . . ) .
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15
1 1 ><a—i a 1
= = — 1
a+i a+i a—-i a?+1 a?2+1

(72)
c
9o
=
=
(e)
(7]
©
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=
[
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16

1 2

z+i  z—i

Taking reciprocals on both sides:
zZ—1i

z+i=-—

3 1

27= 77!

— 1.

z= 31

17

Letz = x + iy forreal x,y

Then z* = x — iy

z+z"=2x=8sox =4

z—z"=2iy=6isoy =3

z=4+3i

18

letf(x) =x3—x24+x—1

By inspection, f(1) = 0 so (x — 1) is a factor of f(x).
fx) =(x—1D(ax?*+bx+c)=x3—x2+x—-1
Expanding and comparing coefficients:

x3:a=1

x>b—a=-1sob=0

xl:c—b=1soc=1

x%: — ¢ = —1is consistent with this
fX)=(x—-1D%?+1D) =(x-Dx+i)(x—1)

The roots are 1, +i

19

Let f(x) = x3 — 5x%2 + 7x + 13

By inspection, f(—1) = 0 so (x + 1) is a factor of f(x).
f(x) = (x+ 1)(ax? + bx +¢) = x3 —5x%+ 7x + 13
Expanding and comparing coefficients:

x3:a=1

x>:b+a=-5s0b=-6

xl:c+b=7s0c=13

x%: ¢ = 13 is consistent with this

fx) =(x+ 1?2 —6x+13)=(x+1)(x — 3+ 2i)(x — 3 —2i)
The roots are —1, 3 + 2i

20

lzw| = 4/(—\/5)2 +12 =2,

5wt
Since Re(zw) < 0,arg(zw) = m + arctan (—) =

0 Friaay
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z 2
|zw|><|—|=|z |=1s0]z]| =1
w

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

z s T
arg(zw) + arg (W) = arg(z?) = 3 soargz =

6
21
2 1 2(2-1) b—i
2+i b+i (Q+iD)@2-1) GB+i)DB-10
_4-21 b—i
5 b%+1
If this is a real value then its imaginary part equals zero.
2 1
—= =0
NS
2(b2+1)=5
b>+1= >
2
b= 3
2
22

letz=2+iyfory€eR

Then z2 = 4 — y? + 4iy
4—-y2=3s0y=+=+1

z=2+i

23

letz=x+iyforx,y €R

z+|z| =18+ 12i

Comparing real and imaginary parts:
X ++/x?+y?=18

y =12

x?+ 144 = (18 — x)? = x? + 324 — 36x
36x = 180

x=5

z=5+12i

24 a

|z — 4| =2|z—-1]|
letz=x+iyforx,y ER
V=42 +y2 =2,/(x —1)2 + y2
x2—8x+16+y?> =4(x?—-2x+1+y?)
3x2 +3y?2 =12

x2+y2=4

JxXZ+y?=lz| =2

0 Friaay
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25
Let f(z) = z3 — 1122 + 43z — 65
For a polynomial with real coefficients, complex roots occur in conjugate pairs
So, given 3 — 2i is a root, 3 + 2i is also a root. The final root must be real, z = k.
f(z) =(z—-3+4+2i)(z—3—-2i)(z—k)
=(z2-6z+13)(z—k)
=2z3—-112z%2 + 43z - 65
Comparing coefficients:
z31=1
z2:—6—k=-11sok =5
z1':13 + 6k = 43 is consistent with k = 5
z%: — 13k = —65 is consistent with k = 5
The roots are 3 + 2i,5
26 a If z=ithen Re (z) = 0 but Re (z2) = Re(—1) = —1 # 02

b Re(z?) = (Re(z))2 — (Im (z))2
So if Re(z2) = (Re(z))2 then (Im (z))2 =0solm(z) =0

27 ai
z3 =—8=23cis(r + 2nn) forn € Z
_2_(n+2nn) ) ()2 (1), 2 (Sn)
z = 2cis ) = 2cis i cis(m), 2cis 3
aii
z=14iV3or—2
b

The triangle has (vertical) base length 2+/3 and (horizontal) altitude 3 so has area

~Xx2V3x3=3V3

28

2|z| = |z + 3|

2(x2 +y2 = /(x +3)2 + y2
4x% 4+ 4y% = x? + 6x + 9 + y?
3x2+3y2—6x=9
x2+y2—2x=3

This form is fine as a final answer, since the question asks for the relationship between the
variables.

0 Friaay
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You could continue to complete the square
(x—1)2%+y%2=4
or find y in terms of x

y=+/4—(x-1)?

but this is not necessary as the question is phrased.

29

|z +pwl* = (1 +2p)* + (1 —p)?
=5p?+2p +2

Completing the square:

2 _ 2 E
|z +pw|*=5(p +5p +2
—5( +32 L
—\\P75) T2
2

—5( +1> +9
—2\PT5) T3

. 9 . 3
|z + pw|? has minimum value 250 |z + pw| has minimum value —=

V5
30 If |z — 1| = |z — i| then z lies on the perpendicular bisector of 1 and i
Im
$ 21 =2~
4
2
—4 -2 ) Rl
—p
T

31 a
Letz =cis@
By De Moivre’s theorem, z™ = cis nf
Using binomial theorem to expand (cis 8)°
Re (z™) = cos 560
= Re (cos® @ + 5icos* O sin@ — 10 cos® 8 sin? @ — 10i cos? O sin® 6
+ 5cos 8 sin* 0 +isin® 6
= cos®> 0 — 10 cos® 8 sin? O + 5 cos O sin* 0
=c0s°0 —10cos® 6 (1 — cos? 8) + 5cos O (1 — cos? §)?
= 16cos®> 8 — 20 cos3 0 + 5cos b
b
If cos56 = 5cos@6:
16 cos® 6 —20cos® 6 =0
4cos®0 (4cos’0—-5)=0
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5
cos@ = 0orcos? 8 = 1 (reject, outside the range of cos 0)
g = m  3m
=272

32 a
zw = (1 +1)(1+iV3)
=(1-v3)+i(1++3)
b

2l = V12 + 12 =2

Since Re (z) > 0,arg z = arctan G) = %
z=12 (cos (%) + isin (%))

lw| = /12 +(V3) =

Since Re (w) > 0,argw = arctan( ) = %

-2 (eos Q) 150 (D) .

T T
Then |zw| = 2v2 and arg(zw) = " + 31T

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

|

c
Comparing the results from parts a and b

Sm<7n> 1+\/_ V2 ++6

12 242 4
33 a

V3 +i| = /(\/§)2+12=2

Re (V3 +1i) > 0 soarg(V3 + i) = arctan (%) =
b

(V3+ 1)7 = (2 cis (%)) = 27 cis (76ﬂ)
(V3-1) = (2eis(~5)) =27cis(- )
(V3+i) +(V3-i) =27 (2 cos (%)) =128 X 2 X (—?) = —128V3

34 a
z3=8=23cis(2nn) forn € Z

o[

— e (Zmr)

Z = A CIS 3

2m 4r
= 2cis(0) or 2cis (?) or 2 cis (?)
=2or—1+iV3
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b
(z+2)3 =823

zZ+2
=wwherew =2or—1+iV3

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

35 a
el = cos@ +isinf andsoe
Then el + 71 = 2 cos @
olf 4 o-if
2

~10 = cosO —isin @

So cos@ =

b
Using binomial theorem:
(x+x D*=x*+4x>+6+4x2+x7*

c
Ifx = e thenx™* = e % and (x + x™') = 2cos 6
By De Moivre’s theorem, (x™ + x™™) = 2 cosnf
From part b:
(Qcos* =x*+x*+4x*>+4x72+6

= 2cos40 +8cos20 + 6

1
cos* @ = g(cos 40 + 4 cos 20 + 3)
_1,_1 .3
“Tg’ 723
d

A

T 1
f cos*(2x) dx = §f cos 8x + 4 cos4x + 3 dx
0

0
T

1
= 3 [gsin 8x + sin4x + 336]0
1
= g (37’[ — 0)
_ 3
- 8
36 a
AB = |z; — 7|
=[1-(2-V3)i|
2
= \/ 12+ (2 -+3)
8 — 43
_zﬁ V3
(> HODDER
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b
-2
arg z, = arctan (7) =——

—/3 T

= t — = ——
argz, = arc an( T > 3

Then angle subtended at the origin between the two points in the complex plane is the
difference in their arguments:
T
argz, —argz; = .5
37 a
w3 =1butw # 1
Then(1-w)(l+w+w))=1+w+w?—(w+w?+1)=0
Since w # 1, it follows that 1 + w + w? = 0
b
Then w + w? = —1
(wx + w?y)(wix + wy) = W3(x% + y2) + (w? + wH)xy
=x2+y% + (w + w?)xy
=x%+y%—xy
38 a z=Re(z)+Im(z)and z* = Re (z) — Im (2)
Then z + z* = 2 Re (2)
(zw*)* = z*'w
c From part a, zw* + (zw*)* = 2 Re (zw”™) so is real

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

39

el = cosa + isina and e™'* = cosa —isina
So el® 4+ e71@ =2 cosa

Then if a = ix:

el =e*cRforx € Rande ' =e* € R
Soel® +e7@ g R

But el + e7% = 2 cosa = 2 cosix

Hence cosix € R

If you consider cos y in its Maclaurin expansion, as an even function of y, then it is also clear
that cos ix must be real, since it is a sum of even powers of ix, each of which must be real for

real x.
40
If|z| =randargz = 6
|z|z3 = r*cis 30 = —81 = 3*cis(m + 2nm)
T+ 2nm
r=30=————
3 5
s s
Then z = 3cis (§) 3 cis(m) or 3cis (?)
3V3
= _+_ —
>t ior —3
41 a

If z=rcisO then z* = rcis(—8)
Sozz* =7r?cis(0 — 0) =1r? = |z|?

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 38

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



b
Ifz=x4+iyandw =u+ivforx,y,u,v € R then
lz—wlP=Cx-uw?+ @y —-v)?=x*+y?+u®+v?—2ux—2yv
lz+wl?P=Cx+u)?+ @y +v)2=x2+y?+u?+v?+2ux+2yv
Solz—wl?+|z+w|? =2(x% +y% +u? +v?) =2|z|*> + 2|w|?
42

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

z|z| + —=3z
Z
Letz = rcis@

1
Then |z| =r,— = —cis 6
z*r

2
So r? cisH+;cis€ = 3rcis O

r3+2-3r%
————isf =0

Since 7cﬂiSH #0,73+2-3r%2 =
By observation, r = 1 is a solution of this, so (r — 1) must be a factor.
3=3r2+2=0-10@?*-2r-2)
=r-1D(r-1-V3)(r-1++v3)
So the solutions are r = 1,1 + /3
43 a
|z+ 1] = /(1 + cos 26)2 + sin? 26
= /1 + cos? 26 + sin? 26 + 2 cos 20

=/2(1 + cos 20)
=+/4cos26

= 2cos 6
(selecting positive root because the modulus must be positive)
b
Re (7 + 1) > 050 arg(z + 1) = arctan sin 20 )
e(z so arg(z = arctan 1T o520
_ arct (2 sin @ cos 0)
= arctan | ————
= arctan(tan @)
=0
44 a
Letz =cisf

By De Moivre’s theorem, z™ = cisnf
Using binomial theorem to expand (cis 8)3
Re (z3) = cos 36
= Re (cos® 0 + 3icos? @ sinf — 3 coshsin?H —isin3 0
= cos36 — 3 cosfsin? 6
= cos30 — 3 cos O (1 — cos?8)
=4cos30 —3cosH
b

L (Zﬂ)¢1
w = cis 7

w’ =cis2r =1

b B0
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bi
(1-w)(1+w+w?+ 0+ o0*+ 0’ + w0’
=(1+w+w?+w+o+ 0+
—(wtw*+d+ot+0’+w®+w0’)=0
Since w # 1, it follows that 1 + w + w? + w? + w* + W> + W® =0
bii
w® = cis (12n> = cis (— 2—n> =w*
7 7
Similarly, w® = (w?)* and w* = (03)*

21 4n
Thenw+w6=2Re(w)=2cos<7) w +w5—2cos(7) w? + w*

—> (6n)
= 2 cos 7

From part bi, 1 + w + 0w? + w3 + w* + w® + w® =0
Taking the real part of this:

142 (o (7) +cos() 4 os (7)) =0
CoS 7 CosS 7 CosS 7 =

<2n)+ (4n)+ (6%)_ 1
cos 7 coSs Z cos 7)="3

c
2T
Let cos (7) =t i
Using the identity from part a with 6 = 7”

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

61
cos (7) = 4¢3 -3t
Using the double angle formula,
<4n) =221
cos(—) =

Substituting these into the result from part bii:

1
t+ QP -1+ (@t3-3t)=—=

2
8t3+4t?—4t—-2=-1
8t3+4t2—4t—1=0
Hence cos (271:) = t is a root of the given cubic.
45 ai

lzl= |(V3) +12=2

|z,| = ,/(—\/5)2 +12=2
|z5] = (=2)2 =2

1 T
Re (z;) > 0 soargz; = arctan (—) =2

V3

Re (z,) < 0 + arctan (——) 2

e(z,) <0soargz, =+ arctan|——| = —
2 822 3 G
_3m

argzs = >

zq4 = 2cis (E) Z, = 2cis (5—n> Z3 = 2cis (3_7'[)

1= 6 y42 — 6 )43 — 2

{» HODDER
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5]

aii
Since each of the three have the same modulus, and their arguments differ by 2?”, it follows
that they all lie on a circle about the origin with radius 2, equally spread so that they
represent the vertices of an equilateral triangle with centre at the origin.
aiii
It follows that if w = cis ( . ) is the first of the three roots of unity,
Z, = wz, and z3 = w?z;
So zi" + z3" = z3"(1 + w3™) = 223"
And Zgn — an(w2)3n — Zl3n(w3)2n — an
Therefore z3™ + z3™ = 223"
bi  cis(2F) fork=0,1,..,6

bii
sin (2771)
Re (1 +w) > 0so arg(1 + w) = arctan — =
1+ cos (7)
= arctan Zein (%) CO; (g)
2 cos? (7)
= arctan (tan (;))
m
~7

biii
For a polynomial with real coefficients, complex roots occur in conjugate pairs
2m .
So, given w = cis ( - ) is aroot, w* = cis ( - ) is also a root.

Therefore (z — w)(z — w*) must be a factor of the polynomial z7 — 1
(z=—w)(z—w*) =22 —2Rew + |w|?

2
=z —chos(7)+1
By the same argument,

41 61
(z — 2z cos( 7 ) + 1) and (z — 2z cos( 7 ) + 1) must also be factors.

46 ai
Using binomial theorem to expand
(cis8)® = cos® 6 + 5icos* @ sinO — 10 cos> 0 sin? & — 10i cos? 6 sin® 4
+ 5cos 8 sin* 6 +isin® 6
aii
By De Moivre’s theorem, (cis 8)™ = cisné so (cis 8)> = cis 50
Then Im ((cis 8)°) = sin568 = 5cos* @ sin® — 10 cos? 6 sin3 6 + sin® O
aiii
Re ((cis 8)°) = cos 50
= cos®> 8 — 10 cos> 8 sin? 6 + 5 cos O sin* 8
b
z°> =rScis5a = 1 = cis(360n°) forn € Z
r>=1sor=1
5a = 360n° and @ > 0 is the minimum possible value,so ¢ = 72°
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c
Since Im (z%) = Im (1) = 0, by part aii,
5cos*asina —10cos? asin®a +sin®a =0
Since sina # 0,
5cos*a — 10 cos? asin®a + sin*a =0
5(1 —sin?a@)? — 10(1 — sin? @) sin®a + sin*a =0
16sin*a — 20sina +5 =10

d
The result in part ¢ is a quadratic in sin? a
Using the quadratic formula:

20 +./(=20)2 -4 x 16 x5

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

i02 oy —
SIn® a = 2% 16
_ 10+ 2V5
- 16
Thensing — |10+2V5 _V10+2V5
ensina = 16 = 4
a=10,b=2,c=5,d =4
47 a

Using the binomial theorem:
(cis8)3 = cos® 0 + 3icos? O sinf — 3 cosOsin®?6 —isin3 4
= (cos®8 — 3 cos O sin? @) +i(3 cos? O sinO — sin® H)
b
By De Moivre’s theorem, (cis 8)3 = cis 360
So Re (cis 38) = cos 38 = cos® 0 — 3 cos O sin?
= cos36 — 3 cos O (1 — cos? 8)
=4cos36 —3cosb
c
By similar reasoning and the binomial expansion,
cos 50 = Re ((cis 8)°) = cos® 8 — 10 cos® 0 sin? 8 + 5 cos 6 sin* 4
=c0s°0 —10cos® 6 (1 — cos? 8) + 5cos O (1 — cos? §)?
= 16co0s® 0 — 20cos® O + 5cos O
d
cos 560 + cos 30 + cos@ = 16 cos® 6 — 16 cos® 6 + 3 cos O
=cos6 (4cos?0 —1)(4cos?>6 —3)

1 3
Socos@zOorizorig
o=+o, +2 47
72’7376

e

cos50 =0 =16cos’>8 —20cos3 0 + 5cos 6
= cos 0 (16 cos* 8 — 20 cos? 0 + 5)

20+/(—20)2—4x16 x5 5++5

Socos8 = 0 orcos? 6 =

2% 16 -8
But the smallest possible positive solution to cos 58 = 0 is 56 = % sof = 110
This must correspond to the largest possible value of cos 8
‘ HODDER
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)

Vs 5++/5 =

So cos ( ) -,g
10 8 3

The other solutions to cos 56 = 0 are 56 = 3—”,5—”,7—n or = 8
2722 2 S

3n T 7t 91 o

So 6 = x
10°2°10°10 o

The cosine of each of these, given the decreasing value of the cosine curve between 0 and =

m, must be the remaining four roots of the quintic in decreasing order:

<3n) 5 8x/_

0 Friaay
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 5A
1

Proposition: 13 + 23 + -+ n3 =
( %)

Inductive step: Assume the proposmon is true for integern = k > 1

n?(n+1)>2
4

Basecasen=1:13=1= so the proposition is true forn = 1

S0 13 + 23 4 - 4 k3 = KA
4
Working towards: 13 + 23 + -+ k3 + (k+ 1)3 = W
k?(k +1)°
1B3+284+ -+ k3+(k+1)3= (T)-l_ (k+1)* (byassumption)
k + 1)?
=¥[k2+4(k+1)]
k+1)2
=%[k2+4k+4]
k 4+ 1)?
Z%(k-l-Z)z
So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

2

Proposition: 1 X3 +2 X4+ -+ nn+2) =
1(2)(9)
6

n(n+1)(2n+7)
6

Basecasen=1:1x3 =3 = so the proposition is true forn = 1

Inductive step: Assume the proposition is true for integern = k > 1
SO1X3+2 x4+ + k(k + 2) = XD

Working towards: 1 X 3+ 2 x4+ -+ k(k+2)+ (k+1)(k+3) =

1x3+2%x4+-+k(k+2)+(k+1)(k+3)
=k(k+1)(2k+7)+(k+1)(k+3)

(k+1)(k+2)(2Kk+9)
6

6
(by assumption)
k+1
=—[kQk +7)+6(k +3)]
k +
= ——[2k? + 13k + 18]
{y HODDER
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k + )

( )(k+2)(2k+9) 5
So the proposition is true forn = k + 1 E
Conclusion: 9
The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1. g
Therefore, the proposition is true for all n € Z* by the principle of mathematical x
induction. ;o
3
Proposition: ¥*_, r?(r + 1) = n(n+1)(n1-;2)(3n+1)
Basecasen=1:12x(1+1)=2= % so the proposition is true forn = 1

Inductive step: Assume the proposition is true for integern = k > 1

SoYk_ r2(r+1) = k(k+1)(k1+22)(3k+1)

Working towards: ¥ ¥t1r2(r + 1) =
k+1

Zrz(r 41y Rt 1)(k1+22)(3k +1)
C(k+ Dk +2)

(k+1)(k+2)(k+3)(3k+4)
12

+ (k + 1)%(k + 2)(by assumption)

r=1

[k(Bk+ 1)+ 12(k + 1)]

A DEH2) 0 g3k 4 1]

= (k ¥ 1igk *2) (k+3)(3k+4)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

4

Proposition: Y7, 2 X 371 =3" — 1

Base casen = 1: 2 X 3° = 2 = 3! — 1 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
SoYk 2x3m1=3k_-1

Working towards: Z’;"’%Z x 3771 = 3k+1 1
k+1

szr 1o szy 14 9 x gh+1-1

= 3" — 1+ 2 x 3*(by assumption)

=3x3k-1

— 3k+1 -1
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

0 Friaay
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5
1 n
Proposition: ».7*—,
(2r- 1)><(2r+1) 2n+1

1 1
Basecasen=1:— ==

1x3 3 2x1+1
Inductive step: Assume the proposmon is true for integern = k > 1
1

So Zr 1 - 1)><(2r+1) 2k+1

Working towards: Y'x 1o 1)><(2r+1) Py

so the proposition is true forn = 1

(72)
c
9o
=
=
(e)
(7]
©
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=
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S

k+1

1 1 1
Z(Zr—l)x(2r+1) (2r—1)><(2r+1) 2k +1) x 2k + 3)

1 .
_2k+1*%2k+1)x@k+3)®y”“mmnm0

1
T2k [k+2k+3
[k(2k + 3) + 1]

1% 2k+3
[2k? + 3k + 1]

+1
1
+
1
X
S 2k+1 2k +3
1
+1
+1

~ 2k

QRk+1)(k+1)
X

2k 2k + 3
k
~ 2k +3
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical

induction.
6
.. . n 1 — L
Proposition: 7', e e
1 1
Base case n = 1: — = - = — so the proposition is true forn = 1

1x2 2 141

Inductive step Assume the proposition is true for integern = k > 1
k.

So Zr 1 =

r(r+1) k+1
1 k+1

i k+1 _ k41
Working towards: Y21 iD= ka2

k+1

~ 1 1

rzzlr(r+1)_;r(r+1)+(k+1)(k+2)
k 1

=k+1+m+1xk+m

k+1h+k+J
1 [k(k+2)+1]

Tk+1 T k+2
1 [k? + 2k + 1]

k11 k+2

0 Friaay
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1 ><(k+1)2
T k+17 k+2
k+1

k42
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

7

Proposition: Y7, 3r(r — 1) = n(n? — 1)

Basecasen =1:3x 1 x (1 —1) =0 = 1(12 — 1) so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1

So Yk . 3r(r—1)=k(k*+1)

Working towards:
k+1

Z 3rr—1) =((k+D((k+1)2—-1)=(k+ 1)(k*+ 2k) = k(k + 1)(k + 2)

k+1

ZBr(r—l) ZSr(r—1)+3(k+1)(k+1—1)

= k(k2 + 1) + 3(k + 1)k(by assumption)

=k[k?+ 1+ 3(k + 1)]

= k[k? + 3k + 2]

=k(k+1)(k+2)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

8
Proposition: 5™ — 1 = 4m for some m € Z
Base case n = 0: 5° — 1 = 0 = 4 X 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 1
So 5% —1 = 4A for some A € Z
Working towards: 51 — 1 = 4B for some B € Z
5k+1 1 =5(5%) -1
=50G-1)+4
= 5(4A) + 4(by assumption)
=4(54+1)
= 4B(where B =5A+1€Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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9
Proposition: 4™ — 1 = 3m for some m € Z
Base case n = 1: 4! — 1 = 3 = 3 X 1 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So 4¥ —1 =3Aforsome A € Z
Working towards: 4*1 —1 = 3B for some B € Z
4R+ 1 = 4(4%) -1
=4(4*-1)+3
= 4(3A) + 3(by assumption)
=3(44A+1)
= 3B(whereB=4A+1€7Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
10
Proposition: 7* — 3™ = 4m for some m € Z
Base casen = 0: 7° — 3% = 0 = 4 X 0 so the proposition is true for n = 0
Inductive step: Assume the proposition is true for integern = k > 1
So 7% — 3% = 44 for some A € Z
Working towards: 7%*1 — 3%*1 = 4B for some B € Z
7k+1 _ 3k+1 — 7(7k) _ 3(3k)
= 7(7% —3F) + 4 x 3k
= 7(4A) + 4 x 3¥(by assumption)
= 4(74 + 3%)
= 4B(where B =7A+ 3% € 7)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
11
Proposition: 30™ — 6™ = 12m for some m € Z
Base case n = 0: 30° — 6% = 0 = 12 X 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 1
So 30% — 6% = 12A for some A € Z
Working towards: 30%*1 — 6¥*1 = 12B for some B € Z
30%*1 — gk*+1 = 30(30%) — 6(6%)
= 30(30% — 6%) + 24 x 6*
= 30(124) + 24 x 6*(by assumption)
= 12(304 + 2 x 6%)
= 12B(where B = 304 + 2 X 6% € Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n = 0 by the principle of mathematical
induction.
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12
Proof uses the fact that the product of two consecutive numbers must be even.
That is, for any integer k, because either k or k + 1 must be even it follows that
k(k + 1) = 2C for some integer C (%)
Proposition: n® —n = 6m for some m € Z
Base casen = 1: 13 — 1 = 0 = 6 X 0 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So k3 —k = 6A for some A € Z
Working towards: (k + 1) — (k + 1) = 6B for some B € Z
k+1)3—-(k+1)=k3+3k?*+3k+1—-(k+1)

=k®—k+3k?+ 3k

= 6A + 3k(k + 1)(by assumption)

= 64 + 3 X 2C(by *, for some integer C)

=6(A+ C)(whereB=A+C €Z)
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.

Therefore, the proposition is true for all n = 1 by the principle of mathematical
induction.

13
Proof uses the fact that the product of two consecutive numbers must be even.
That is, for any integer k, because either k or k + 1 must be even it follows that
k(k + 1) = 2C for some integer C (%)
Proposition: n(n? + 5) = 6m for some m € Z
Base casen = 1: 1(12 + 5) = 6 = 6 X 1 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So k(k?+5) = 6A forsome A € Z
Working towards: (k + 1)((k + 1)?> + 5) = 6B for some B € Z
k+1D((k+1)2+4+5) =(k+1)(k?*+2k+6)
=k3+3k*+8k+6
=k3+5k+ (3k?+3k+6)
=k3+5k+3k(k+1)+6
= 6A + 3k(k + 1) + 6(by assumption)
= 6A + 3 X 2C + 6(by *, for some integer C)
=6(A+C+1)(wWwhereB=A+C+1€Z)
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.

Therefore, the proposition is true for all n = 1 by the principle of mathematical
induction.

14

Main proof uses the fact that for any integer k > 1, 4% — 1 = 3m for some integer m

()
(See worked solution for Q9 above for proof)
Proposition: 7* — 4™ — 3n = 9m for some m € Z

Basecasen=1:7' —4'—3x1=7—-4—3 =0 = 0 X 9 so the proposition is true

forn=1
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Inductive step: Assume the proposition is true for integern = k > 1
So 7% — 4k — 3k = 94 forsome A € Z
Working towards: 7%t — 4**1 —3(k + 1) = 9B for some B € Z
7R+ —4k+1 _ 3(k + 1) = 7(7%) — 4(4%) = 3(k + 1)
=7(7% — 4k —3k) + 3 x 4¥ + 18k — 3
= 7(7% — 4% — 3k) + 18k + 3(4* — 1)
= 7(94) + 18k + 3(4* — 1)(by assumption)
= 7(94) + 18k + 3(3m)(by *, for some integer C)
=9(7A + 2k + m) (where B=7A+2k+m€Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n = 1 by the principle of mathematical
induction.

15
Proposition: 32"*2 — 8n — 9 = 64m for some m € Z
Base casen = 1: 32*1*2 -8 x 1 -9 =81 —8 — 9 = 64 = 1 X 64 so the proposition
istrue forn =1
Inductive step: Assume the proposition is true for integern =k > 1
So 32k*2 — 8k — 9 = 644 for some A € Z
Working towards: 3**** — 8(k + 1) — 9 = 64B for some B € Z
32k+4 _8(k +1) — 9 = 9(32k*2) — 8k — 17
= 9(3%k+2 — 8k — 9) + 64k + 64
= 9(64A) + 64(k + 1)(by assumption)
=64(9A+k+1) (whereB=9A+k+1€7Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

16
U = 7,upy1 = 2u,+3forn>1
Proposition: u, =5 x 2" =3
Base casen = 1: 7 = 5 X 21 — 3 50 the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So up =5x2%k-3
Working towards: Uy, = 5 x 2k*1 — 3
Ug4+1 = 2Uy + 3(recurrence relation)
= 2(5 x 2% — 3) + 3(by assumption)
=5x2kt1—6+3

=5x2kt1 3
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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17
u; = 3, Upy; =5u, —8forn>1
Proposition: u,, = 571 + 2
Base case n = 1: 3 = 59 + 2 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So Up = 5k_1 + 2
Working towards: Uy, = 5% + 2
Ug4+1 = 5uy — 8(recurrence relation)
= 5(5%~1 + 2) — 8(by assumption)

(72)
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=5+10-8

=5k42
So the proposition is true forn = k + 1
Conclusion:

The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

18
u; = Luy =3u,+1forn>1

Proposition: u, = %(3” -1)

Basecasen=1:1= %(31 — 1) so the proposition is true forn = 1

Inductive step: Assume the proposition is true for integern = k > 1
So w, =>(3¥—1)
Working towards: u,,, = %(3""'1 -1)

Ug4+1 = 3Uy + 1(recurrence relation)

1
=3 (E (3k — 1)) + 1(by assumption)

1 3
=-x31——41
2 27"

1
— E(3k+1 _ 1)

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

19

y=>0-07"

Proposition: y™ = n! (1 — x)™""1

Base casen = 0: y(® =y = 0! (1 — x)°~* so the proposition is true for n = 0
Inductive step: Assume the proposition is true for integern =k > 0

So y® =1 (1 —x)7k1
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Working towards: y*+1 = (k + 1)! (1 — x) k-2
d
(k+1) — — (4, (&)
y - (%)

d
= I (k' (1 — x)7*~1)(by assumption)

= (=1)(=k — Dk! (1 — x)"*=2(by chain rule)

= (k+ Dk!'(1—x)k2

=(k+1D!A—x)F2
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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20

y=(1-3x)7"

Proposition: y™ = 3™n! (1 — 3x)™""1

Base case n = 0: y(@ =y = 390! (1 — 3x)°~* so the proposition is true for n = 0
Inductive step: Assume the proposition is true for integern =k > 0

So y® = 3kk! (1 — 3x)7k1

Working towards: y*+1 = 38+1(k + 1)1 (1 — 3x) k2

d
(k+1) - (k)
y — (™)

d
=% (3*k! (1 — 3x)~*~1)(by assumption)

= (=3)(=k — 1)3%k! (1 — 3x)~*2(by chain rule)

= (k+ 13k (1 — 3x)7*2

=3%+1(k + 1)1 (1 — 3x) 72
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

21

y = erx

Proposition: y™ = (2"x 4+ n2""1)e?*

Base casen = 0: y(® = y = (2% + 0 x 271)e?* so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 0

So y® = (2kx + k2k~1)e?*

Working towards: y**1 = (2k+1x + (k + 1)2K)e?*

d
(k+1) — — (+,(K)
y - ()

d
= Ix ((2*%x + k2k~1)e?*)(by assumption)

= 2ke?* + 2(2kx + k2¥~1)e?*(by product rule)
= (2% + 2F+1x + k2K)e?*
= (28 1x + (k + 1)2F)e?*

So the proposition is true forn = k + 1
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Conclusion:

The proposition is true forn = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

22

y =xsinx

Proposition: y@?™ = (=1)"(x sin x — 2n cos x)

Base casen = 0: y(® =y = (—1)°(x sin x + 0 cos x) so the proposition is true for
n=20

Inductive step: Assume the proposition is true for integern = k > 0

So y@® = (=1)¥(x sinx — 2k cos x)

Working towards: y2k+2 = (=1)**1(x sinx — 2(k + 1) cos x)

d[(d
@k+2) — [ = (4, (2K)
y o (dx (v ))

d(d
=— (a ((=1)*(x sinx — 2k cos x)) (by assumption)
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dx

d
= a((—l)k(sinx + x cos x + 2k sin x)

= (—=1)*(cos x + cos x — x sin x + 2k cos x)

= (=1)*((2k + 2) cos x — x sinx)

= (=D (xsinx — 2(k + 1) cos x)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

23

y = xzex

Theny' = (2x + x2)e*

y" = (24 2x + 2x + x?)e* = (2 + 4x + x?)e*

Proposition: y™ = (x? + 2nx + n(n — 1))e* forn > 2

Base case n = 2: y@ = y" = (x2 4+ 2(2)x + 2(1))e* so the proposition is true for
n=>2

Inductive step: Assume the proposition is true for integern = k > 2

So y® = (x% + 2kx + k(k — 1))e*

Working towards: y**9 = (x2 4+ 2(k + Dx + (k + 1)k)e*

d
(k+1) - (k)
y - (%)

= % ((x2 + 2kx + k(k — 1))e") (by assumption)
= (x% 4 2k + 2x + 2kx + k(k — 1))e*
=(x?+2k+Dx+k@2+k—1))e"
= (%2 +2(k + Dx + k(k + 1))e*

So the proposition is true forn = k + 1
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For some real values u,v,x,y,w =u+ivandz = x + iy
Thenz* =x —iyandw* =u —iv
(zw)* = ((x + iy)(u +iv))’
= (xu—yv+i(xv + yu))*
=xu —yv —i(xv + yu)
z*w* = (x —iy)(u — iv)
=xu —yv —i(xv + yu)
So (zw)* = z*w*
b
Proposition: (z™)* = (z*)™ for all positive integers ».
Base case n = 1: (z*) = z* = (z1)* so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1
So (z¥)* = (z*)¥
Working towards: (z**1)* = (z*)k+1
(Z*)k+1 — (Z*)k X z*
= (z%)* x z*(by assumption)
= (z* x z)*(by part a)
— (Zk+1)*
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
25
u; = 5,uy, =13, U4 = 5Suy —6u, forn>1
Proposition: u,, = 2™ + 3™
Base case n = 1: 5 = 21 + 31 50 the proposition is true forn = 1
Base case n = 2: 13 = 22 + 32 so the proposition is true for n = 2
Inductive step: Assume the proposition is true for integern =k > land forn =k + 1
So u, = 2% + 3% and uy,, = 2k 4 3K+
Working towards: Uy, = 2k+2 4 3k+2
Up42 = SUk4q — 6uy (recurrence relation)
= 5(2F*1 4 3%*1) — 6(2F + 3¥)(by assumption)
= 2k(10 — 6) + 3%(15 — 6)

=4x2k+9x3k
:2k+2+3k+2

Conclusion: ®
The proposition is true for n = 2, and, if true forn = k, itis also true forn = k + 1. Ke)
i
Therefore, the proposition is true for all n > 2 by the principle of mathematical 3
induction. 8
°
o
24 a x
(]
=

So the proposition is true forn = k + 2

Conclusion:

The proposition is true forn = 1andn = 2, and, iftrueforn =kandn =k + 1, itis
also true for n = k + 2. Therefore, the proposition is true for alln € Z* by the
principle of mathematical induction.
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26
u; = 3,uy, =36,Upyp = 6Uy 1 — U, forn>1
Proposition: u,, = (3n — 2)3"
Base casen = 1: 3 = (3 X 1 — 2) x 31 so the proposition is true forn = 1
Base case n = 2: 36 = (3 x 2 — 2) X 32 so the proposition is true for n = 2
Inductive step: Assume the proposition is true for integern =k > land forn =k + 1
So u, = (3k — 2)3% and uy; = (3k + 1)3k+1
Working towards: uy., = (3k + 4)3%*2
Up 4o = 6U,4q — Uy (recurrence relation)
= 6((3k + 1)3k+1) - 9((3k — 2)3"")(by assumption)
=[18(3k + 1) — 9(3k — 2)]3*
=9[6k + 2 — 3k + 2]3*
= [3k + 4]9 x 3
= (3k + 4)3**2
So the proposition is true forn = k + 2
Conclusion:
The propositionistrue forn = 1andn = 2, and, iftrueforn =kandn =k + 1, itis
also true forn = k + 2. Therefore, the proposition is true for alln € Z* by the
principle of mathematical induction.

27

Proposition: Y, r xr!l=((n+1)!—-1

Basecasen =1:1x 1! =1 = (1 + 1)! — 1 so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern = k > 1

So Yk rxrl=((k+1)!-1

Working towaids Yetlrxrl=(k+2) -1

k+1
err!=2rxr!+(k+1)x(k+1)!
r=1 r=1
=(k+1)!—=1+(k+1)x (k+ 1)!(by assumption)
=k+DI[1+k+1]-1
=k+D!Ixk+2)—-1
=k+2)-1
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

28

Proposition: Y7, (—1)""1r? = (—1)”‘IM

2
Basecasen =1: (-1)°x12=1=(-1)° x 1x(1+1)

1
Inductive step: Assume the proposition is true for integern = k > 1

So Yk (=12 = (_1)k—1k(kT+1)

Working towards: ¥ *t1(—=1)""1r? = (- 1)k(k+1)2ﬂ

so the proposition is true for n =
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k+1 k 7))
c
D DT = Y T+ (DR + 1) 15
r=1 r=1 Kl + 1 %
+
= (=1)k1t % + (=1D*(k + 1)?(by assumption) g
Gkt 1) £
=(-1) [k +2(k+1)] ;o
D (k +
= —( ) ; ) (k+2)
k+1)(k+2
I (EaN(ES
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

29

Tip: This could be proved using a difference between two triangle numbers. In the spirit of the
chapter, the proof by induction is given below. Remember that in an exam, if the question does
not specify a method, you may choose any valid method as long as you ensure that you make no
assumptions not permitted within the spirit of the question — avoiding circular arguments, in
particular!

Proposition: Y*_,(n+r) = %n(Bn +1)
Basecasen =1:1+1 = % X 1 X (3 + 1) so the proposition is true forn = 1

Inductive step: Assume the proposition is true for integern = k > 1
So TK_i(k+71) =-k(3k +1)
Working towards: Y 1(k + 1+ 1) = = (k + 1)(3k + 4)

k+1 k
Z(k+1+r)=Z(k+1+r)+(k+1+k+1)
r=1 r;l X
=Z(k+r)+21+2k+2
r=1 r=1
=Z(k+r)+k+2k+2
r=1

1
= Ek(3k + 1) + 3k + 2(by assumption)

1
=§[3k2+k+6k+4]

1
=§(3k2 + 7k + 4)

= %(k +1)(3k + 4)

So the proposition is true forn = k + 1
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Conclusion: 0
The proposition is true forn = 1, and, if true forn = k, itis also true forn = k + 1. Ke)
i
Therefore, the proposition is true for all n € Z* by the principle of mathematical 3
induction. 8
°
o
30 =<
(]
=

Tip: The question uses k as the index variable in the sum; either use a different index variable or
a different variable for the inductive argument — make sure you don’t use the same letter in
different contexts within the same question.

Proposition:
n
Zkzk = (n—1)2"*1 42

Base case n = 1:
1 x 21 = (1 — 1) x 22 + 2 so the proposition is true forn = 1

Inductive step:
Assume the proposition is true for integern =m > 1
m

So Zk2k=(m—1)2m+1+2
k=

Workmg towai ds: Yt k2% = m2m+2 4 2
m+1

Z k2k = z k2k + (m + 1)2m*!

= (m 1)2™m*1 + 2 + (m + 1)2™*1(by assumption)
=2""1m-14+m+1)+2
=21 x2m+2
=m2™m*t2 4+ 2
So the proposition is true forn = m + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = m, it is also true forn = m + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

31

Proposition: Foranyn € Z, n> + (n+ 1)3 + (n + 2)3 = 9m for some m € Z

Base case n = 0: 03 + 13 + 23 = 9 = 9 X 1 so the proposition is true forn = 0

Inductive step (positive direction): Assume the proposition is true for integern = k > 0

So k3+ (k+1)3+ (k+2)3 =9A for some A € Z

Working towards:(k + 1)3 + (k + 2)3 + (k + 3)3 = 9B for some B € Z

k+1)34+(k+2)2+(k+3)3=(+1)3+ (k+2)3+[k3+9k?+ 27k + 27]
=k3+(k+1)3+(]k+2)2+9k?>+3k+3)
= 94 + 9(k? + 3k + 3)(by assumption)
=9B(whereB=A+k?+3k+3€Z)

So the proposition is true forn = k + 1
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Inductive step (negative direction): Assume the proposition is true for integer
n=k<0

So k3+ (k+1)3+ (k+2)3 =9A for some A € Z

Working towards:(k — 1) + k3 + (k + 1)® = 9C for some C € Z

(k=13 4+k3+(k+1)3=[k®-3k?+3k—1]+k3+ (k+1)3
=[k3®+6k?+12k+8—9k? -9k — 9] + k3 + (k+1)3
=k+2)°2-9k*+k+1)+k3+(k+1)3
=94 — 9(k? + k + 1)(by assumption)
=9C(whereC=A—k?—-k—1€17)

So the proposition is true forn = k — 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.

Therefore, the proposition is true for all n € Z by the principle of mathematical

induction.
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32

Proposition: 2 X 6 X 10 X ... x (4n — 2) = 22 for some n > 1
@x1)! _ 2 '

=180 the proposition is true forn = 1

Basecasen =1:2 =

Inductive step: Assume the proposition is true for integern = k > 1
So 2x6x10x...x(4k—2)=%
Working towards:2 X 6 X 10 X ... X (4k — 2) X (4k + 2) = ((2::12))‘!

2X6X10X ..X (4k —2) X (4k +2) = [2 X 6 X 10 X ... X (4k — 2)] x (4k + 2)
2k!
= — X (4k + 2)(by assumption)

k!

2k!
_ 2k 22k + 12k +2)
k! 2k + 2
_2k! y 2k + 1)(2k + 2)
k! k+1
_ 2k +2)!
 (k+1)!

So the proposition is true forn = k + 1

Conclusion:

The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n > 1 by the principle of mathematical

induction.
33
uTl
u; = 1,u = forn>1
1 n+1 un 1
.. 1
Proposition: u,, = -

Basecasen =1:1= % so the proposition is true forn = 1

Inductive step: Assume the proposition is true for integern = k > 1

1
So U =+

b B0
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1

Working towards: uy,, = P

)
c
)
_ U ( lation) %
Uppq = —— recurrence relation o
1 9
2 -
=1 (by assumption) )
z+1 =
1
@)k
=3 p
rT 1
1
T k+1
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

34
Proposition: 2" > 1+ nforalln > 1
Base case n = 2: 22 = 4 > 1 + 2 so the proposition is true for n = 2
Inductive step: Assume the proposition is true for integern = k > 2
So 2¥>1+k
Working towards: 21 > 2 + k
2k+1 =2 Zk
> 2 X (1 + k)(by assumption)
> 242k
>2+k)+k>2+k(sincek >0)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 2, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n = 1 by the principle of mathematical
induction.

35
The proof uses the fact that for p > 3, p? > 2 (*)

Proposition: 2" > n? foralln > 4
Base case n = 4: 2* = 16 = 42 so the proposition is true for n = 4
Inductive step: Assume the proposition is true for integern = k > 4
So 2k > k?
Working towards: 2%t > (k + 1)?
2k+1 =2 2k
> 2 %X (k?)(by assumption)
>k*+2k+1+k*—-2k—-1
>k+1)?+k*-2k+1-2
>k+1?+(k—-1)2-2
> (k + 1)%(since (k — 1)? > 2 by (x))
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So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 4, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n = 4 by the principle of mathematical
induction.

Exercise 5B

Tip
Several questions in this exercise require assumption or proof of a basic rule of prime
factorisation. These can generally be assumed (unless specified otherwise) but in the worked
solutions below they are often explicitly proved. When sitting an examination, students may
choose, depending on circumstance and the credit available for a question, whether these should
be proved or merely asserted. Asserting is generally acceptable unless it leads to a circular
argument.
1
Proposition: For integer n, if n? is even then n must be even
Assume the contrary: Suppose that n? is even and n is odd.
Then n = 2k + 1 for some integer k
Son?=Qk+1)QR2k+1)

=4k* +4k +1

=22k?*+2k) +1

= 2m + 1 for some integer m
So n? is odd, which contradicts the assumption.
Conclusion:
The assumption that if n? is even n could be odd is shown to lead to a contradiction.
Therefore, if n? is even, n must also be even.

2
Proposition: For integers a and b, if ab is even then a must be even or b must be even
Assume the contrary: Suppose that ab is even and both a and b are odd.
Thena = 2m + 1 and b = 2n + 1 for some integers m and n.
Soab=02m+1)2n+1)
=4dmn+2m+2n+1
=22mn+m+n)+1
= 2k + 1 for some integer k
So ab is odd, which contradicts the assumption.
Conclusion:
The assumption that if ab is even both a and b could be odd is shown to lead to a
contradiction.
Therefore, if ab is even, at least one of a and b must also be even.

3

The proof uses the fact () that if an integer k has square k? which is a multiple of 5
then k must also be a multiple of 5.

Proving (*) first, by contradiction:

Proposition: For integer k, if k? = 5m for some integer m then k = 5n for some
integer n
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Assume the contrary: Suppose that k? = 5n and k = 5n + r where 7 is an integer 1 <
r<4.
Sok?=0Gn+r)(Gn+71)
= 25n% + 10nr + 2
= 5(5n? + 2nr) + 2
= 1,4,9 or 16, none of which are multiples of 5
So k? is not a multiple of 5, which contradicts the assumption.
Conclusion:
The assumption that, for an integer k, k? can be a multiple of 5 while k is not a multiple
of 5 is shown to lead to a contradiction.
Therefore, if k? is a multiple of 5, k must also be a multiple of 5.
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Now to the question asked:
Proposition: V5 is irrational
Assume the contrary: Suppose that v/5 can be expressed as s for some integers p and q

which have no common factors greater than 1 (i.e. the fraction is expressed in
simplified form).
Squaring both sides:

p?

5=—2

2 2
p* =5q

Then p? is a multiple of 5 and, by (*), p must also be a multiple of 5
p = 5a for some integer a.

(5a)* = 5¢°
25a? = 5¢°
qZ — 5(12

Then g? is a multiple of 5 and, by (), g must also be a multiple of 5.
This contradicts the assumption that p and g have no common factors greater than 1.
Conclusion:

The assumption that v/5 = S for some integers p and q with gcd(p, q) = 1 is shown to

lead to a contradiction.
Therefore, V5 cannot be expressed as a ratio of integers in simplest terms.
Therefore, /5 is irrational.

4

The proof uses the fact (*) that if a power of an integer is even, that integer must also
be even.

() is assumed without proof here (proof is similar to that given at the start of question

3)

Proposition: ¥/2 is irrational
Assume the contrary: Suppose that 3/2 can be expressed as s for some integers p and q

which have no common factors greater than 1 (i.e. the fraction is expressed in
simplified form).
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Cubing both sides:

3
p3 =2 q3

Then p3 is a multiple of 2 and, by (*), p must also be a multiple of 2

p = 2a for some integer a.

(2a)® = 2¢°

8a3 = 2¢3

q® = 4a® = 2(2a?®)

Then g3 is a multiple of 2 and, by (*), ¢ must also be a multiple of 2.

This contradicts the assumption that p and g have no common factors greater than 1.
Conclusion:

The assumption that 3/2 = s for some integers p and q with gcd(p, q) = 1 is shown to

lead to a contradiction.

Therefore, Y2 cannot be expressed as a ratio of integers in simplest terms.
Therefore, V2 is irrational.

5

Proposition: If three real values x, y, z have mean 126 then at least one of them must be
at least 126.

Assume the contrary: Suppose that the three values are ordered x < y < z and have
mean 126 but z < 126.

Thenx <y <z <126

Sox <126,y <126,z < 126

Then (x +y +2z) <3 x 126

xX+y+z

— < 126

3
This contradicts the assumption that the mean of the three values is 126.

Conclusion:

The assumption that all three values can be below the mean of their values is shown to
lead to a contradiction.

Therefore, at least one of the values must be at least 126.

In context, if the three children have mean height 126 cm then at least one of them must
be at least 126 cm tall.

6 a
For integers a, b, ¢, d with b,d # 0, % and 2 are arbitrary rational values.
a c ad bc ad — bc

b d bd bd _ bd i
(ad — bc) and bd are both integers, with bd # 0 so =

b
Proposition: If x is a rational value and y is an irrational value then (x + y) is irrational.
Assume the contrary: Suppose that there is a rational value x and irrational value y for
which x + y is rational.
Then (x + y) — x is the difference between two rational values
By part a, (x + y) — x must be rational
That is, y must be rational.
This contradicts the assumption that y is irrational.

1s a rational value.
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Conclusion:

The assumption that the sum of a rational and an irrational value can be rational is
shown to lead to a contradiction.

Therefore, the sum of an irrational and a rational value must be irrational.

7

It is assumed that log, 3 > log, 2 = 1 so without further working, log, 3 is assumed to
be positive.

Proposition: log, 3 is irrational

Assume the contrary: Suppose that log, 3 can be expressed as S for some positive

integers p and q
14
log,3 =—
“Ca
Putting each side as a power of 2:

14

zlogz 3 _-3=2q
q is a positive integer

py 4
31 = (25) = 2P
Every positive integer power of 3 must be odd, as a product of odd numbers (proof
analogous to Q1)
Every positive integer power of 2 must be even, as a product of even numbers (proof
given in Q1)
No odd number can equal an even number, so 3 cannot equal 2P.
This contradicts the assumption that log, 3 = 3

Conclusion:
The assumption that log, 3 = s for some integers p and q is shown to lead to a

contradiction.
Therefore, log, 3 is irrational.

8
The proof uses the fact (*) that if two integers a and b have product ab which is a
multiple of 3 then either a or b must also be a multiple of 3.
Proving () first, by contradiction:
Proposition: For integers a and b, if ab = 3m for some integer m then either a = 3n or
b = 3n for some integer n
Assume the contrary: Suppose that ab = 3mand a = 3x +rand b = 3y + s where r
and s are integers 1 < 7,5 < 2 so that a and b are not multiples of 3.
Soab = @Bx+1r)3y+5s)

=9xy +3xs+3yr+rs

=3@xy+xs+yr)+rs
rs = 1,2 or 4, none of which are multiples of 3
So rs is not a multiple of 3, and so ab is not a multiple of 3 which contradicts the
assumption.
Conclusion:
The assumption that, for integers a and b, ab can be a multiple of 3 while neither a nor
b is a multiple of 3 is shown to lead to a contradiction.
Therefore, if ab is a multiple of 3, either a or b must also be a multiple of 3.
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Now to the question asked:
Proposition: logs 7 is irrational

Assume the contrary: Suppose that logs 7 can be expressed as g for some positive

integers p and q
14
log; 7 = —
g
Putting each side as a power of 3:

14

310g3 7 =7 = 3q
q is a positive integer

q
74 = (33) = 3
3P for positive integer p is a multiple of 3
7 is not a multiple of 3.
79 =7 x 7971 and, by (x), if 77 is a multiple of 3 then, since 7 is not a multiple of 3,
791 must be.
This argument can be iterated to prove that 79 cannot be a multiple of 3 for any positive
integer q.
Therefore, 79 cannot equal 3P for positive integers p and q.
Conclusion:
The assumption that logz 7 = s for some integers p and q is shown to lead to a

contradiction.
Therefore, logs 7 is irrational.

9

An even number is defined as an integer multiple of 2.

Proposition: There is no largest even integer

Assume the contrary: Suppose that there is a value N which is the largest even integer.
Then N = 2M for some integer M

If M is an integer then M + 1 is an integer, and so is 2(M + 1) [since the integers are
closed over addition and multiplication]

But by the definition of an even number, 2(M + 1) is an even number.
2M+1)=2M+2=N+2>N

This contradicts the assumption that N is the largest even number.

Conclusion:

The assumption that there is a value N which is the largest even number is shown to
lead to a contradiction.

Therefore, there is no largest even number.

10

Proposition: There is no smallest positive real number

Assume the contrary: Suppose that there is a value d which is the smallest positive real
number.

Thend > 0

But 0.5d must also be a positive value, since the product of two positive values is
always positive.

For a positive value d, 0.5d < d

So 0.5d is a positive real value less than d.

This contradicts the assumption that d is the smallest positive real number.
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Conclusion:

The assumption that there is a value d which is the smallest positive real number is
shown to lead to a contradiction.

Therefore, there is no smallest positive real number.

11 a
If p;, p, and p; are prime numbers then %psﬂ =pyp3 +— 1s the sum of an integer
1

and a non-integer, which cannot be an integer.
So p1p,p;3 is not divisible by p;.
Equivalent arguments (or symmetry) show that p; p,p5 is not divisible by any of p,, p,
or p3

b
Proposition: There are infinitely many prime numbers
Assume the contrary: Suppose that there is a finite number N of prime numbers.
Then the primes can be listed in ascending order as p; = 2,p, = 3, ..., py Withp; <
p2 < < Pn-
Then let g be the value found when all the primes are multiplied together, and the result
added to one:
q=p1 Xpz Xp3X..Xpy+1
Using the same argument as in part a, q is not divisible by any of the prime numbers.
But by definition, an integer which is not divisible by any prime number with a lesser
value must itself be prime.
Then q is a prime and has a value greater than py.
This contradicts the assumption that py is the greatest prime value.
Conclusion:
The assumption that there is a finite number of prime numbers is shown to lead to a
contradiction.
Therefore, there are infinitely many prime numbers.

12 a
Y
!
/ = T
b The proof uses the fact (*) that if an integer q has cube g3 which is a

multiple of a prime value a then g must also be a multiple of a.
The proof of this follows a similar path to that shown in question 3.

Proposition: The real root to x3 + x + 1 = 0 is irrational
Assume the contrary: Suppose that the real root of x3 + x — 1 = 0 can be written as

X = s for some integers p and q, where gcd(p,q) =1
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3
PPy
a q
p’+pg®—q°>=0
q° =p° +pq?
=p(®*+4q?)
Let a be the least prime factor of p.
Since the left side is a multiple of p, it must also be a multiple of a.
Therefore, the right side is a multiple of a.
But if g3 is a multiple of prime number a then ¢ must be a multiple of prime number a
(using fact (x)).
Therefore, prime value a is a factor of both p and g
This contradicts the assumption that p and g have no common factors greater than 1.
Conclusion:
The assumption that root x can be written as a ratio of integers in simplest form is
shown to lead to a contradiction.
Therefore, the root x is irrational.
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Exercise 5C

1

Proposition: Vx? —1=x—1
Counterexample: Let x = 2

Then Vx2 —1=+/3
andx—1=2-1=1

V3£1

Conclusion: x = 2 is a counterexample.
2

Proposition: (x — y)3 = x3 — y3
Counterexample: Letx =2,y =1

Then (x —y)3=13=1

Andx3 —y3=23-13=7

17

Conclusion: x = 2,y = 1 is a counterexample.
3

Proposition: In(a + b) =lna+1Inb
Counterexample: Leta =1,b =1

Then In(a + b) = In(2) = 0.693
Andlna+Inb=In(1)+In(1)=04+0=0
0.693 # 0

Conclusion: a = b = 1 is a counterexample.
4

Proposition: If j—z = 2x then y = x?

Counterexample: Lety = x2 + 1
Then 2 = 2x
dx
Conclusion: y = x2 + 1 is a counterexample.
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5

Proposition: sin2x = 1 = x = 45°
Counterexample: Let x = 225°

Then sin 2x = sin450° =1

Conclusion: x = 225° is a counterexample.
6

Proposition: If % = 2, thena=bandc =d
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Counterexample: Leta =1,b=2,c =2,d = 4

Then% = % =0.5

And==2=05
So%=§althougha¢candb *d

Conclusion: a = 1,b = 2,¢ = 2,d = 4 is a counterexample.

7

Proposition: A quadrilateral with four equal sides must be a square
Counterexample: The rhombus formed by joining two equilateral triangles along a
common side is an equilateral quadrilateral whose interior angles are 60° and 120°.
A square must be equiangular (all interior angles are equal, to 90°)

Conclusion: A non-square rhombus is a counterexample.

8

Proposition: Vx2 = x forall x
Counterexample: Let x = —1

Then VxZ =vV1 =1

Andx = -1

1+-1

Conclusion: x = —1 is a counterexample.
9

Proposition: If ab is an integer then a and b are both integers
Counterexample: Leta = 0.5,b = 2
Then ab = 1 € Z although b is not an integer
Conclusion: a = 0.5, b = 2 is a counterexample.
10 a
f(1) =1+ 1+ 11 = 13 which is a prime
f(2) =4+ 2+ 11 = 17 which is a prime
f(3) =9+ 3 + 11 = 23 which is a prime
b
Proposition: f(n) is prime for alln € Z
Counterexample: Letn = 11
f(11) = 112 + 11 + 11 = 11 X 13 which, as the product of two primes cannot be
prime.
Conclusion: n = 11 is a counterexample.
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11 0
Tip: Note that if you use an equivalent of x and y = 1 — x, you then may need the proof given §
in exercise 5B question 6 to show that y must be irrational. Make sure you avoid any possibility %
of a circular argument! co
Proposition: The sum of two irrational numbers is an irrational number E
Counterexample: Let x be an irrational number and y = —x 5
Then x and y must both be irrational numbers =
But x + y = 0 which is a rational number.

Conclusion: Irrational value x and y = —x is a counterexample.

12

Proposition: If x? > 100 then x > 10

Counterexample: Let x = —11

Then x? = 121 > 100

Butx < 10

Conclusion: x = —11 is a counterexample.

13

Proposition: If z* = 1, thenz = 1 or — 1.
Counterexample: Let z = i

Then z* = (z?)? = (-1)? =1

Butz #1or—1.

Conclusion: Complex number z = i is a counterexample.

14
Proposition: An irrational number raised to an irrational number is always

irrational
vz
V2 V2

Counterexample: Let x = /2 ? andy = xV2 = (\/E 2)

Then, using the laws of indices, y = (\/7)\@(\/E = (\/E)Z = 2 which is rational.
Buty = xﬁ, so if the proposition is true, either v2 or x must be rational.
2 is known to be irrational (see proof in Worked example 5.3).

Ifx = \/E\/E is rational, this would itself be a contradiction of the proposition.
- vz i\ 2
Conclusion: Either V2~ or (\/7 ) represents a counterexample; one of them must be

rational, while being an irrational number raised to an irrational number.

Tip: The wonderful thing about a proof like this is that we can prove that one of two numbers
must be rational, without ever needing to know or prove which one! There are many examples
of proofs in mathematics where the existence of a thing can be proved without ever finding that
thing.
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Mixed Practice g
1 =
Proposition: ', r(r + 1) = %(n +1)(n+2) %
7
Basecasen=1:1><2=2=§(1+1)(1+2) kA
Inductive step: Assume the proposition is true for integern = k > 1 g
K
k =
o Zr(r +1) =30+ Dk +2)
r=1

Working towards: Y 1r(r +1) = = (k + 1)(k + 2)(k + 3)
k+1 k
Zr(r+ 1) =Zr(r+ 1)+ k + 1)k + 2)
r=1 r=1

w‘

—(k+1)k+2)+k+1)(k+2) (byassumption)

UJ

— (k+ 1Dk +2) [3 + 1]

Uy

=2 (e + Dk +2)(k +3)

So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
2
Proposition: -, 7(3r = 5) =n(n+ 1)(n — 2)
Basecasen =1:1(3x1—-5) =—-2 = 1(1 + 1)(1 — 2) so the proposition is true for
n=1
Inductive step: Assume the proposition is true for integern = k > 1
k

0 Zr(Br —5) = k(k + 1)(k - 2)

Wo;/:z:ag towards: Y¥1r(3r —5) = (k + 1)(k + 2)(k — 1)
k+1 k
Zr(Sr _5) = Zr(Sr 5+ (k+ 1Bk +1) —5)
r=1 r=1

k

= Zr(3r -5+ (k+1)Bk-2)

r=1

=k(k+1)(k—2)+ (k+1)(3k—2) (byassumption)

=(k+ 1D[k(k—-2)+ 3k —2]

=M+ D[k?+k-2]

=k+1Dk+2)(Kk-1)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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3
The proof uses the fact (*) that if an integer k has square k? which is a multiple of 3
then k must also be a multiple of 3.
Proving () first, by contradiction:
Proposition: For integer k, if k? = 3m for some integer m then k = 3n for some
integer n,
Assume the contrary: Suppose that k? = 3n and k = 3n + r where 7 is an integer 1 <
r < 2.
Sok?=0Bn+r)3n+r)
= 9n? + 6nr + r?
= 3(3n? + 2nr) + r?
2 = 1 or 4, neither of which are multiples of 3.
So k? is not a multiple of 3, which contradicts the assumption.
Conclusion:
The assumption that, for an integer k, k? can be a multiple of 3 while k is not a multiple
of 3 is shown to lead to a contradiction.
Therefore, if k? is a multiple of 3, k must also be a multiple of 3.

Now to the question asked:

Proposition: /3 is irrational
Assume the contrary: Suppose that v/3 can be expressed as % for some integers p and q

which have no common factors greater than 1 (i.e. the fraction is expressed in
simplified form).
Squaring both sides:

p?

3=—2

2 2
p° =3q

Then p? is a multiple of 3 and, by (*), p must also be a multiple of 3.
p = 3a for some integer a.

(3a)? = 3¢*
9a? = 3q*?
q2 — 3a2

Then g2 is a multiple of 3 and, by (*), ¢ must also be a multiple of 3.
This contradicts the assumption that p and g have no common factors greater than 1.
Conclusion:

The assumption that V3 = S for some integers p and q with gcd(p, q) = 1 is shown to

lead to a contradiction.
Therefore, v/3 cannot be expressed as a ratio of integers in simplest terms.
Therefore, /3 is irrational.

4

Proposition: (x + 2)? = x? + 4
Counterexample: Let x = 1

Then (x +2)? =(1+2)2=9
andx?+4=1+4+4=5

9+#5

Conclusion: x = 1 is a counterexample.
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5

Proposition: a* + a¥ = a**Y

Counterexample: Leta = 1

Thena*+a” =1"+1"=1+1=2

and a**Y = 1Y =1

2+#1

Conclusion: a = 1 is a counterexample, for any values x and y.
6

Proposition: If a + b is an integer then a and b are both integers
Counterexample: Leta = 0.5,b = 0.5

Thena+b=1€Z

Buta,b € Z

Conclusion: a = b = 0.5 is a counterexample.

7

Proposition: All prime numbers are odd

Counterexample: 2 is a prime number and is even

Conclusion: 2 is a (the only) counterexample.
8

Proposition: ', r(r + 1)? =
Basecasen = 1: 1(1+ 1)?> = 4

nn+1)(n+2)(3n+5)

12
_ 1(1+1)(1+2)(3+5)

so the proposition is true for n =

12
Inductive step: Assume the proposition is true for integern = k > 1
K
k(k+1)(k+2)3Bk+5
So Zr(r+1)2 = ( ) ) )
4 12
T:
Working towards: Y31 r(r + 1)% = (et 1) (ke 2) (ke +3) (3K +8)
k+1 K Y
Zr(r +1)% = Zr(r 12+ (k + 1)(k + 2)2
= Kk + 1)k +2)(3k + 5
+ + +
= ( ) 3 ) ) + (k+ 1)(k +2)? (by assumption)
k+1)(k+2
= ( ) )[k(3k+5)+ 12(k + 2)]
k+1)(k+2
= ( ) ) [3k? + 17k + 24]
k+1)(k+2
=( i; )(k+3)(3k+8)
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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9

Proposition 2 2n
rroposiuion:
r= L 2r—1(2r+1)  2n+1
2 2 2x1

Basecasen=1:———==-=
(2-1)(2+1) 3 2x1+1

Inductive step: Assume the proposition is true for integern = k > 1
K

so the proposition is true forn = 1

(72)
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s Z 2 _ 2k
© L @r-D@r+1D 2k+1
r=

. ) . k+1 2 o 2(k+1)
Working towards: Y52 1(2r DGrD = 2k+3
k+1

2 2 2

Z 2r—1@r+1) (2r - 1)Qr+1) (2k +1)(2k +3)
B 2k 2
_2k+1+(2k+1)(2k+3)

[2k(2k + 3) + 2]

(by assumption)

T Qk+ 12k +3)
[4k? + 6k + 2]

~ 2k + 12k +3)

= kT Dk 3 K 3k

T~ Qk+ D2k +3) 2k + Dk +1)

2(k+1)
T 2k +3)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

10
Proposition: 12" — 1 = 11m for some m € Z
Base case n = 0: 12° — 1 = 0 = 11 X 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern =k > 0
So 12K —1 = 11A for some A € Z
Working towards: 12%** — 1 = 11B for some B € Z
12kt — 1 =12(12%) -1
=12(12F - 1) + 11
= 12(114) + 11(by assumption)
=11(124+ 1)
= 11B(where B =12A+ 1 € Z)

So the proposition is true forn = k + 1

Conclusion:

The proposition is true forn = 0, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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Proposition: 32" + 7 = 8m for some m € Z
Base case n = 0: 3° + 7 = 8 = 1 x 8 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 0
So 3%k +7 = 8A for some A € Z
Working towards: 32t 4+ 7 = 8B for some B € Z
32(k+1) _ 1 = 9(32k) +7
=932k +7) - 56
= 9(84) — 56(by assumption)
=804 —-7)
= 8B(where B=94A—-7 €Z)

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

12
Proposition: 52" — 24n — 1 = 576m for some m € Z
Base case n = 0: 5° — 24(0) — 1 = 0 = 576 X 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 0
So 5%k — 24k —1 = 576A forsome A € Z
Working towards: 5%+ — 24(k +1) — 1 = 576B for some B € Z
52(k+1) _ 24(k + 1) — 1 = 25(52%K) — 24k — 25
= 25(5%F — 24k — 1) + 24(24k)
= 5(576A) + 576k (by assumption)
=576(5A + k)
= 576B(where B=5A+k € Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

13 a

X
f =
() =5—

(2 f x)
(Fof(x) = —2~%
2= (2 — x)

_ X

2(2—-x)—x

_ X

C4-—3x
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b
Proposition: (fo..of)(x) = m

X
21-(21-1)x
Inductive step: Assume the proposition is true for integern = k > 1

Base casen = 1: f(x) = E = = F, (x) so the proposition is true forn = 1
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So (fo ven 0 D(x) — Zk — (Zk — 1)x
k times
Working towards:
X
(Fmiemi)ix) = 2K+ _ (2k+1 _ 1)x
(k +1) times
(fo - Q(x) = f(fo Vii'o D(x)
\—V'_/ ;\f"—/
(k +1) times k times
- f( a ) b tion)
=z 2F — Dx y assumption
X
k—(2k - 1)x

i 2_<2k — (zjif— 1)x)
X

T 202F— (2F—Dx) —x
X

~ ok+1 _ (2FT — 2)x —x
x

~ ok+1 _ (2K — Dx
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical

induction.
c
x
F =
n() = o T Dx
F_(x) = X _ 2x
AW T T2 Dx 1+ (2" — Dx
2"x
n __
Then F,,(F_, (x)) = 1+ Q"= Dx
n _ (2 1) <2—x>
1+ (27— Dx
2n
C2n(1 4 (20— 1x) — (20 — 12
B 2"x
2m 4 22ny — DNy — 220y 4 PNy
=x
That is, F, (x) is the inverse of F_,,(x) (and vice versa, by replacing n with —n
throughout).
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14 ai
n

Z(Zi ~1

i=1
aii Proof by induction:

Proposition:

;(Zi —1) =n?

Base case n = 1.
1 = 12 _so the proposition is true forn = 1

Inductive step:
Assume the proposition is true for integern = k > 1

k
So Z(Zi 1) = k?
i=1

Working towards: ¥ ¥} (2i — 1) = (k + 1)?
k+1 k

Ri-1)= ) Ri-D+Q2k+1)-1)
2.Cim0=)

i=1

= k? + (2k + 1)(by assumption)

= (k + 1)?
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true for n = k, it is also true
forn = k + 1. Therefore, the proposition is true for all n € Z* by the
principle of mathematical induction.

aiii

47 14
Z(Zi 1) - Z(Zi — 1) = 472 — 142 = 2013
i=1 i=1

(72)
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=
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bi

E

bii
Each of the n points is connected to each of the other (n — 1) points.
Of those line segments, two will be edges of the polygon (connecting to the consecutive
vertex on each side) and the remaining n — 3 will be diagonals.
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In the sum n(n — 3), each diagonal will be counted twice (diagonal AC will be counted o
both from A and from C), so the total number of diagonals when each counted once 9
n(n-3) ":';'
must be ——— ©
*
b11(1 °
Require ——= ) > 108 g
n? — 31 — 2000000 > 0 ;°
A positive quadratic has values greater than 0 for values outside the roots.
The only positive root of the quadratic is n = Hsﬁﬂ ~ 1415.7

The least such integer solution for n > 1415.7 isn = 1416

15
The i™ term of a geometric series with first term a and common ratio 7 is ar
The working and the formula to prove presumes that r # 1.

Proposition:

n

Z art-1 = —a(rn —D
r—1

i— 1

i=1
Base case n = 1:

a(r-1) .. .
a=——-580 the proposition is true forn = 1
Inductive step:
Assume the proposition is true for integern = k > 1

k

., _a(*-1)

Y e it

, r—1

=1
Working towards:
K+1
Z - a(rk“ . 1)

art 7 t=———
. r—1
i=1
k+1 k
Z art=1 = Z art™' + ar*
i=1 =1

a(r* -1
= % + ar*(by assumption)

a
=T_1(rk—1+(r—1)rk)

— a (Tk+1 _ 1)
r—1

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.

Therefore, the proposition is true for all n € Z* by the principle of mathematical

induction.

16

Proposition: 9" — 2™ = 7m for some m € Z

Base case n = 0: 9° — 2% = 0 = 7 x 0 so the proposition is true for n = 0
Inductive step: Assume the proposition is true for integern =k > 0

So 9% — 2% = 7A forsome A € Z
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Working towards: 9%¥*1 — 2¥*1 = 7B for some B € Z
9k+1 _ 2k+1 — 9(9k) _ z(zk)
= 9(9% — 2%) + 7(2%)
= 9(74) + 7(2%)(by assumption)
= 7(94 + 2%)
= 7B(where B = 94 + 2* € 7Z)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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17
Proposition: 15" — 2™ = 13m for some m € Z
Base case n = 0: 15° — 2% = 0 = 13 X 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern =k > 0
So 15% — 2% = 13A forsome A € Z
Working towards: 15%*1 — 2¥*1 = 13B for some B € Z
15k+1 — 2k+1 = 15(15k) — 2(2%)
= 15(15% — 2¥) + 13(2%)
= 15(134) + 13(2%)(by assumption)
= 13(154 + 2%)
= 13B(where B = 154 + 2¥ € 7)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

18
Proposition: 11™*2 + 122"+1 = 133m for some m € Z
Base casen = 0: 112 + 12! = 133 = 133 X 1 so the proposition is true for n = 0
Inductive step: Assume the proposition is true for integern = k > 0
So 11%+2 4 122k+1 = 1334 for some A € Z
Working towards: 11%¥+3 + 122k+3 = 133B for some B € Z
11543 4 122543 = 11(11%+2) + 144(122F+1)
= 11(11F+2 4 122k+1) 4 133(122k+1)
= 11(1334) + 133(122k*1)(by assumption)
= 133(114 + 122k+1)
= 133B(where B = 114 + 12%¢*1 € 7)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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Proposition: log;o 3 is an irrational number

Assume the contrary: Suppose that log;, 3 is rational.

Then log,o 3 = s for some integer values p and q, where g # 0

Since 3 > 1, log;, 3 > 0 so it can be assumed that both p and q are positive values.

p
So3 =104
31 =10°
3 is odd, so any positive integer power of 3 must also be odd.
10 is even, so any positive integer power of 10 must also be even.
Then 34 cannot equal 10P, since no integer can be both odd and even.
This contradicts the assumption that there are positive integer values p and g with this
property.
Conclusion:
The assumption that log, 3 is rational is shown to lead to a contradiction.
Therefore, log;( 3 is irrational.
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20 a
Proposition: For integers a and b, if ab is odd then both a and b must be odd
Assume the contrary: Suppose that ab is odd and a is even.
Then a = 2k for some integer k
Soab = 2kb

= 2(kb)

= 2m for some integer m
So ab is even, which contradicts the assumption.
Assuming b is even follows exactly the same reasoning, to the same contradiction.
Conclusion:
The assumption that if ab is odd then a or b could be even is shown to lead to a
contradiction.
Therefore, if ab is odd, both a and b must also be odd.

b

Proposition: If ab is even then both a and b must be even
Counterexample: Leta = 2,b = 3
Then ab = 6 which is even as required
But b is odd
Conclusion: a = 2,b = 3 is a counterexample.

21

Proposition: There are infinitely many odd numbers

Assume the contrary: Suppose that there are only finitely many odd numbers.
Then there must be a greatest odd number, N, since the odd numbers can be listed in
ascending order.

Then N + 1 must be an even number, so N + 1 = 2k for some integer k

But then N + 2 = 2k + 1 is an integer which is not a multiple of 2.

N + 2 is therefore an odd number, which is greater than N, which contradicts the
assumption that N is the greatest odd number.

Conclusion:

The assumption that there are finitely many odd numbers is shown to lead to a
contradiction.

Therefore, there are infinitely many odd numbers.
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Proposition: Two straight lines which do not intersect must be parallel
Counterexample:

1
0) (this is the x-axis)

Let [ be the line given by vector equationr = A (
0

(72)
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0 0
Let [, be the line given by vector equation r = (1) +u (O) (this is a line running

0 1
parallel to the z axis)
The two lines do not intersect, since the y-coordinate of any point on /; is 0 and the y-
coordinate of any point on [, is 1.
But the lines are not parallel — in this example, the direction vectors are perpendicular.
Conclusion: If the lines can be in three (or more) dimensions then they can be skew —
neither intersecting nor parallel.

23
Proposition:

Z;:z_m@@)”

Base case n = 1:

2—11 = % =2-(1+2) G) so the proposition is true forn = 1
Inductive step:

Assume the proposition is true for integern = k > 1
K

50y 2 —2- s (3)

Working towards:

k+1 k+1
D3 =2-k+3(3)
r=1
k+1
r r k+1
7=t e
r=1 r=1
N k+1 _
=2—-(k+2) (E) + kT (by assumption)
1 k+1
—2- (E) @k +2) — (k + 1))
1 k+1
—2- (E) (k +3)
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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Proposition: 2™ > 11n for n > 7
Base case n = 7: 27 = 128 > 77 so the proposition is true forn = 7
Inductive step: Assume the proposition is true for integern = k > 7
So 2k > 11k
Working towards: 2%t > 11(k + 1)
2k+1 — z(zk)
> 2(11k)(by assumption)
>11k+11fork > 1
>11(k+ 1)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true forn = 7, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for alln > 7,n € Z by the principle of mathematical
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induction.
25 a
1 3 1 x\/n+1—\/ﬁ
Vn+vn+1 Vn+vn+1 Vn+1-+n
Va¥I-vm
C (n+1)-n
=Vvn+1-+n
b
Substituting n = 1 into the result from part a:
1
N g
ey
V2-1= <—
1+V2 V2
c

Proposition:

Z—>\/_

Base casen = 2:

1+ ! > /2 is true f tb
— 1S true Irom par
N p

So the proposition is true for n = 2

Inductive step:
Assume the proposition is true for integern = k > 2

So Z—>\/_

Wor kmg towards:
k+1

Z_>W

From part a:

VEFT-E =

1 1
<
VE+vVE+1 VEk+1
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So

1
W{_+1>\/k,+1—\/%(>x<)

k+1

Zw ZIW

>\/E+\/Im
> Vi + (Vk + 1 —Vk)(by ()
>Vk+1

So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 2, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for alln = 2,n € Z by the principle of mathematical
induction.
26
Proposition: (2n)! > 2"(n!)?2 for n € Z*
Base case n = 1: (2 x 1)! = 2! = 2 = 21(1!)? so the proposition is true forn = 1
Inductive step: Assume the proposition is true for integern =k > 1
So (2k)! = 2k(k")?
Working towards: (2k + 2)! = 254D ((k + 1)!)2
Rk+2)!=QRk+2)2k+ 1) x (2k)!
> (2k + 2)(2k + 1) x 2¥(k)?(by assumption)
> 2(k + 1)(2k + 1) x 2%(k")?(taking factor of 2)
>2(k+ 1Dk +1) x25(kD?QRk+1>k+1fork > 1)
> 2(k + 1)% x 2k (k!)?
> 2641 ((k + 1))
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for alln > 1,n € Z by the principle of mathematical
induction.
27 a
Proposition: (cos 8 + isin )™ = cosnf + isinnd forn € Z*
Base casen = 1: cos @ + isin @ = cos 8 + isin 8, trivially, so the proposition is true
forn=1
Inductive step: Assume the proposition is true for integern = k > 1
So (cos @ +isin 8)* = cos k6 + isin k@
Working towards: (cos 8 + isin §)k+1 = cos((k + 1)9) + isin((k + 1)9)
(cos @ +isinB)**! = (cos O +isinB)*(cosf + isinH)
= (cos kB + isin k@) (cos 6 + isin 8)(by assumption)
= cos kO cos O — sinkOsin 8 + i (sin kB cos 0 + cos kb sin 6)
= cos((k + 1)9) + isin((k + 1)9) (compound angle formulae)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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b
Proposition: (cos 8 + isin 8)™ = cosné + isinnd forn € Z~
Base casen = —1:

1

cosf +isin@
cosf —isin@
cos? 6 + sin? @
= cosf —isinf
= cos(—0) + isin(—0)
so the proposition is true forn = —1
Inductive step: Assume the proposition is true for integern = —k < —1
So (cos 8 + isin @)% = cos(—k6O) + isin(—k0)
Working towards: (cos @ +isin0) %1 = cos((—k — 1)8) + isin((—k - 1)0)
(cos@ +isinB)™*1 = (cos @ +isinB)*(cos @ +isinH) !
= (cos(—kB) + isin(—kB))(cos O + isin 8)~1(by assumption)
= (cos(—k0) + isin(—k8))(cos(—0)
+ isin(—#))(by base case)
= cos(—k0B) cos(—0) — sin(—k0B) sin(—0)
+ i (sin(—k8) cos(—80) + cos(—kB) sin(— 6))
= cos((—k — 1)9)
+ isin((—k — 1)8) (compound angle formulae)
So the proposition is true forn = k + 1

(cosf +isinf)~! =

Conclusion:
The proposition is true for n = —1, and, if true for n = —k, it is also true for
n = —k — 1. Therefore, the proposition is true for alln € Z~ by the principle of

mathematical induction.

An alternative is given below, for those who would prefer to avoid duplicating the induction in
part a.
Proposition: (cos 8 + isin8)™ = cosné + isinnd forn € Z~
Since (cos 8 —isin8)(cos 8 + isinf) = cos? O + sin?H = 1,
it follows that (cos@ +isin8)~! = (cos @ —isin @) = (cos(—0) + isin(—0))
Letn€Z 'andm=-n€ezZ*
Then (cos 6 +isin8)" = (cosf +isinf)™™

= ((cos @ +ising)~1)™

= (cos(—0) +isin(—6))™

= cos(—m#)

+ isin(—m#@) (by induction in part a, since m € Z*)

= cosnf +isinnd
Conclusion:
The proposition is true for all n € Z~ by adapting the proof by induction of part a.
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28
If the formula is accurate, then the sum for n = 1 would be 12 = ;(a —1)soa=+4%

Proposition:
n
n
Z(Zi — 17 =2 (n? - 1)

i=1
Base casen = 1:
12 = §(4 — 1) so the proposition is true forn = 1

Inductive step:
Assume the proposition is true for integern = k > 1
k

k
o Z(Zi — 1) =2 (4K = 1)
i=1
Working towards:
k+1

Z(Zi _1)2 = E(4(k +1)2-1)

k+1

Z(zl —1)2 = Z(zl —1)2 4+ 2k + 1) — 1)

= Z(Zi —1)? + 2k + 1)?

i=1

k
=3 (4k? — 1) + (2k + 1)?(by assumption)

1
= §k(2k + 1)k —1) + 2k + 1)?
_2k+1

3

2k+1
i (2k? + 5k + 3)

2k +1
=3 k+3)(k+1)

k+1
= T(2k+ 1)(2k + 3)

k+1
T(4k2+8k+3)
=D 1 - )

So the proposition is true forn=k+1
Conclusion:

(2k? —k + 6k + 3)

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.

Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

HODDER
EDUCATION

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

40

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




29

The product notation is used in the working below. Just as the sum notation uses the upper case
letter S’ from the Greek alphabet (sigma), there is a similar notation for product which uses the
upper case ‘P’ (pi) to indicate that the indexed terms should be multiplied together.

Using this notation, we could write n! as the result of a product:

n

ni=1x2x...xn=n!

i=1
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This notation is not taught within the IB course and it is expected that most students would use
the ellipsis (three dots: ...) to indicate a continued pattern instead. However, a compact and
exactly defined product can keep the working clearer, and this notation is as standard as the sum
notation in mathematical literature.

Proposition:

= 2n)!
1_[(41' —2)= (12)
i=1

Base case n = 1:
41)—-2=2=

Inductive step:
Assume the proposition is true for integern =k > 1

So l_[(4l 2) = @

Workzn,g towards:
k+1

_ 2k +2)!
H(‘“ D=

( )

so the proposition is true forn = 1

k+1

1_[(41 —2)= (1_[(41 2)) X (4(k +1) - 2)
(H(m 2)> x 2(2k + 1)

I
( k ! X 2(2k + 1)(by assumption)

_ (2k)! y 2Qk+ 1) (k+1)

k! k+1

_ (2k)! y QRk+1)(2k+2)

k! k+1

_ 2k + 2)!

~ (k+ 1)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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Proposition:

n

. sin(2™1x
Hcos(Z‘x) = % (for x # nm,n € Z)
i=0

Base case n = 0:

The double angle formula for sine gives sin 24 = 2sin A cos A

So cos A = SnCA (*)
2sinA ) ) ) 041

Substituting A = x, cosx = Sm:icrfzsx = S;;frzl’;) = S:;g Sin’;) so the proposition is true for
n=20
Inductive step:
Assume the proposition is true for integern = k > 1

K

. sin(2¢*1x)

So l_lcos 2'x) = 45—

L ( ) 2k+1 gin x

i=
Working towards:
k+1
1—[ (2%) sin(2%*+2x)

cos(2'x) = ———
, 2k+2 gin x
1=0
k+1 k
1_[ cos(2ix) = (1_[ cos(Zix)> x cos(2K*1x)
i=0 i=1 b1

sin(2k+
= Z’CTsn) x cos(2*¥*1x) (by assumption)
sin(2¥*1x)  sin(2%*2x)

= X b ,with A = 2k+1
2k*1ginx  2sin(2k*1x) (by (), wi *)

sin(2¥*?x) sin(2¥*1x)
2k+Zginx % sin(2k+1x)
sin(2k*+2x)
= 2k Zginx
So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z by the principle of mathematical
induction.

31

As in many of the more complicated induction proofs, this requires a preliminary identity to be
established. While it is fine to do this within the body of the induction proof, it is tidier to
establish the identity first and then refer to it, if you can look ahead to see what you will need.
Alternatively, add the identity proof as a footnote to your main proof.

a
The induction proof will use the relationship that sin 24 sin 2B = sin?(4 + B) —
sin(A—B) ()
Proof of this identity using double angle formulae:
sin?(4 + B) = (sin A cos B + cos A sin B)?

= sin? A cos? B + cos? Asin? B + 2 sin A cos A sin B cos B
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Similarly, o

sin?(4 — B) = sin? A cos? B + cos? Asin? B — 2 sin A cos A sin B cos B o

Then sin?(A + B) — sin?(4 — B) = 4 sin A cos A sin B cos B 5
= (2sin A cos A)(2 sin B cos B) >
=sin2Asin 2B g

=

Main inductive proof argument: ;o

Proposition:

n 2

Z sin((2i — 1)8) = % for @ # nm,n € Z*

i=1
Base case n = 1:

. in% @ : o
sinf = S;n— as long as sin 8 # 0, so the proposition is true forn = 1

in@
Inductive step:
Assume the proposition is true for integern = k > 1
k -
. ) sin“(k8)
So Z sm((Zl — 1)0) = "sno
=
Working towards:
< (21 - 1)6) = sin?((k + 1)8)
Zsm(l— )8) = prr
=1
k+1 k
Z sin((2i — 1)) = Z sin((2i — 1)6) + sin((2k + 1))
i=1 i=1
sin® (k6

= SIT(H) + sin((2k + 1)6) (by assumption)

_sin?(k6) + sin 6 sin((2k + 1)6)

- sin 6
Using (*), setting 24 = (2k + 1)0 and 2B = 6,

2k+1)6+6
Then (A + B) = ( 2) =(k+1)6
2k +1)6 —6
And(A—B)=( 2) = k6O
k+1
sin?(k8) + sin?((k + 1)8) — sin?(k6

Z sin((2i — 1)0) = (k6) ((_ )6) (k6)
i sin 6

_sin?((k + 1)6)

- sin
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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b
Substituting 8 = %and n=7:
7

z sin ((Zi - 1)ﬂ> _ sin? (1) “o
7 sin (%)

i=1

32
Proposition
z _(n+DI-1
i+1!  (n+1D!
Base casen = 1:
1 _2-1_ 21-1 T
— = — = —— so the proposition is true forn = 1
21 2! 2!

Inductive step:
Assume the proposition is true for integern =k > 1

e+ 1) —1
S°Z@+1)l (k + 1!

Workmg towards:

- (k+2)—1
Z(l+1)' U +2)!
k+1 k

i i k+1
;(i+1)!=;(i+1)!+(k+2)!
C(k+DI-1 k+1
 (k+ 1) +(k+2)!
(k+2)(k+1D!'—(k+2)+k+1)

(by assumption)

~k+2)!
1
=— 2)! -1
G (k-1
So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

33 a
ne n!

T (n=m)r!

(n—1)! (n—1)!

n-1 — n-1
507l (n—r)(r-1 and 6 = (n—r—1!7r!
Summing these two expressions:

(n—1)! (n—1)!

n-— 1C‘r 1+Tl 1C‘r

n-r'r-1! n—r-21D!r!
rn—1)! Mm-r)(n-1)!

T (n=n)'r! n—nr)r
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(n— 1! (r +(n—-r)) e
CEDIE S
n(n — 1)' %
(n—=nr)r! 7z
n! =
(n=nr)r g
=", =
b
Proposition:
n-1
Z nC, = 2" —2
r=1

Base case n = 2:
2C, = 2 = 2?2 — 2 so the proposition is true for n = 2

Inductive step:

Assume the proposition is true for integern = k > 2
k-1

So chr=2k—2

r=1
Working towards:
k

Z k+1Cr — 2k+1 -2

r=1
k

k
z ktlc, = Z:("Cr_1 + ¥C,) (from part a)
r=1

r=1
k-1 k-1
- (Z kC, + kco) + (Z ke, + kck>

r=1 r=1
= (2k -2+ 1) + (2¥ = 2 + 1)(by assumption)
=202¥-1)
— 2k+1 -2
So the proposition is true forn = k + 1

Conclusion:
The proposition is true for n = 2, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n > 2,n € Z by the principle of mathematical
induction.
34 a
Proposition: n°> —n = 5m for some m € Z
Base casen = 0: 0° — 0 = 0 = 5 x 0 so the proposition is true forn = 0
Inductive step: Assume the proposition is true for integern = k > 1
So k®>—k =5Aforsome A € Z
Working towards: (k + 1)°> — (k + 1) = 5B for some B € Z
(k+1)°—(k+1) =k>+5k*+10k® +10k?* +5k+1 -k —1
= k5 — k + 5k* + 10k3 + 10k? + 5k
= k% —k +5(k*+ 2k + 2k?> + k)
= 54 + 5(k* + 2k3 + 2k? + k)(by assumption)
= 5B(where B = A+ k* + 2k3 + 2k? + k € 7)
So the proposition is true forn = k + 1

5
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n—n=nn*-1D=nn?>*+1D"*-1D)=mn-Dnn+1)n*>+1)
Since n — 1,n and n + 1 are a sequence of three consecutive numbers, at least one must
be even and exactly one must be a multiple of 3. Therefore, their product must be a
multiple of both 2 and 3 and is therefore a multiple of 6.

c
If n is odd then bothn — 1 and n + 1 (and also n? + 1) must be even, so n®> — n has 8
as a factor in addition to 3 and 5, so must be a multiple of 120 and therefore a multiple
of 60.
However, if n is even then of (n — 1), n, (n + 1) and (n? + 1) only n is even. The
product is therefore not a multiple of 4 so cannot be a multiple of 60.
Any even value can be a counterexample:
Ifn = 2 then n® — n = 32 — 2 = 30 which is not a multiple of 60.

Conclusion: ®
The proposition is true forn = 0, and, if true forn = k, itis also true forn = k + 1. Ke)
i

Therefore, the proposition is true for all n € N by the principle of mathematical 3
induction. 8
b ki

X

[

(]

=

35
Let the number of intersection points for n lines, under the arrangement described, be

N,,, and the number of regions be R,,.
__nn-1)

Proposition 1: N, = .
Base case n = 1:

1(1-1)

There are no intersection points; N; = 0 = so the proposition is true forn = 1

Inductive step: Assume the proposition is true for any valid arrangement of k lines for
some k > 1

So Nk = k(kz_l)

) k+1)k
Working towards: (ket1)

intersection points for k + 1 lines.

If an arrangement has k + 1 lines, there are Nj, intersection points.
k(k-1)

Imagine that k lines are blue and one is red. By the assumption, there must be

intersections between the k blue lines.
Since the red line is not parallel to any other, it must intersect each one of the k blue
lines, and since no three lines have a common intersection point, each of these k
intersections must be distinct from each other and from the any of the blue-blue
intersection points.
Therefore, Ny ;4

= number of blue - blue intersections + number of blue

- red intersections

== Nk + k
k(k—1
= (T) + k(by assumption)
k
= E (k -1+ 2)
_k(k+1)
2
So the proposition is true forn = k + 1
‘ HODDER
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Conclusion:
The proposition is true forn = 1, and, if true forn = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical

induction.
n(n+1)

Proposition 2: R, . +1
Base casen = 1:

1(1+1)

The plane is divided into two regions by a single line; Ry = 2 = ———=+ 1 so the

proposition is true forn = 1
Inductive step: Assume the proposition is true for any valid arrangement of k lines for
some k > 1

So Ry, = k(k+1)

+1
(k+1)(k+2)

Working towards: + 1 regions for k + 1 lines.

Imagine again a valid network of k + 1 lines, of which k are blue and one is red.
Without the red line there would be R), regions.
The red line is separated into k + 1 parts by the k blue lines it crosses (k — 1 line
segments that lie between two intersection points and the two rays that connect to the
first and last intersection point of the line).
Each of these line segments must lie within a different region of the k line network, and
so including the red line in the network creates an additional k + 1 regions.
Therefore, Ry 1 = R + (k + 1)

k(k+1)

2

1
=§(k2+k+2k+2)+1

+ 1+ (k + 1)(by assumption)

1
=§(k2+3k+2)+1

=%(k+1)(k+2)+1

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 6A

17

y=3x(x—1(x+2)

Coefficient of x3 > 0 so positive cubic shape
x-intercepts at x = 0,1, —2

y-intercept at y y= 0

4

18
y=—(x+1Dx—-1(x—-3)
Coefficient of x3 < 0 so negative cubic shape
x-intercepts at x = —1,1, 3
y-interceptaty = —(1)(—1)(—-3) = -3
y

4

> T
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19 a e
f(x) = 3x3 — 12x o
= 3x(x? — 4) 5
=3x(x—2)(x +2) >

b 3
Coefficient of x3 > 0 so positive cubic shape <
x-intercepts at x = 0,2, —2 ;o

y-interceptaty = 0
y

A

e 0 2
20 a
f(x) = 5x — 5x3
= —5x(x? — 1)
= —5x(x—1D(x+1)
b

Coefficient of x3 < 0 so negative cubic shape
x-intercepts at x = 0,1, —1
y-interceptaty = 0

y

A

21 a

y=@x+1)*2-x)

Coefficient of x> < 0 so negative cubic shape
roots at x = —1 (repeated root), 2
y-intercept at y = (1)%(2) = 2
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b

y=(+12-x)?

Coefficient of x3 > 0 so positive cubic shape
roots at x = —1, 2 (repeated root)
y-intercept at y =y(1)(2)2 =4

4
= T
-1 2

y =—=2(x —1)?(x + 2)?

Coefficient of x* < 0 so negative quartic shape
roots at x = 1, —2 (both repeated roots)
y-intercept at y = -2(-1)?%(@)?*=-8

0 Friaay
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23 a f(x) = 4x3 —x* = x3(4 — x)
b
Coefficient of x* < 0 so negative quartic shape
roots at x = 0 (triple repeated root), 4
y-intercept at 0
v

[

(72)
c
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=
=
(e)
(7]
©
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=
[
S

24 a
roots at x = —2, 3 (repeated root)
y=p(x+2)(x —3)? = p(x3 —4x? — 3x + 18)
y(0)=36=18p=>p =2
y = 2x3 —8x% — 6x + 36
p=2,q9=-8r=-6,s=36

b
roots at x = 0 (repeated root), 3
y = px*(x = 3) = p(x® — 3x?)
y(2)=4=4p(-1)=>p=-1

y = —x3 + 3x2
p=—-1,qg=3,r=5=0
25 a

y = (x—p)?(x —q) wherep < g
Coefficient of x3 > 0 so positive cubic shape
roots at x = p (repeated root), q

y-intercept at y= —p?q

3

b There is only one solution to y = k for positive values of k.
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Exercise 6B

17

18

19

20

21

22

23

24

Letf(x) =x3+ax+7

By the remainder theorem, f(—2) = —5
—-8—2a+7=-5

a=2

Letf(x) =x3—6x2+4x+a

By the remainder theorem, f(3) = 2

27 —54+124+a =2

a=17

Let f(x) = x? + kx — 8k

By the factor theorem, f(k) = 0

k2 +k?-8k=0

2k(k—4) =0

k=0or4

Let f(x) = 6x3 + ax®> + bx + 8

By the factor theorem, f(—2) = 0 and by the remainder theorem, f(1) = —3
f(—2) = 0= —48 + 4a — 2b + 8
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2a—b =20 )
f(1)=-3=6+a+b+8
a+b=-17 )
(D +(2):3a=3
a=1b=-18

Letf(x) =x3+8x2+ax+b
By the factor theorem, f(2) = 0 and by the remainder theorem, f(3) = 15
f2Q)=0=8+32+2a+b

2a +b = —40 (1)
f(3)=15=27+72+3a+b
3a+b=—84 2)
2)—(D:a=-

a=—44,b =48
Letf(x) =x?—(k+1)x—3
By the factor theorem, f(k — 1) = 0
fk—1D)=0=(k-1D?-(k+1Dk-1)-3
—2k—1=0 (1)

1

k:—z

f(x) =x3—ax?—bx+168=(x—-3)(x —7)(x — k)

Comparing the constant coefficient: 168 = —21k = k = -8

The three roots are therefore 3,7, —8

Letf(x) =x3+ax®>+9x+b

By the factor theorem, f(11) = 0 and by the remainder theorem, f(—2) = —52
f(-2) =-52=-8+4a—-18+b

4a+ b =-26

f(2Q) =8+4a+18+b=26+4a+b =0

By the factor (or remainder) theorem, it follows that the remainder when f(x) is
divided by (x — 2) is 0.

Notice that we never needed the condition on f(11) to answer the question, since a and b did
not need to be evaluated.
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25 a f(4) = 64 —2(16) — 11(4) + 12 = 0 so by the factor theorem, (x — 4)
is a factor of f(x)
b x3—2x?—11x+ 12 = (x — 4)(x*> + ax + b)
Expanding and comparing coefficients:
x3:1=1
x?:—2=a—-4>a=2
x':—11=b—-4a=>b=-3
x°:12 = —4b is consistent with b = —3
x3—2x?—-11x+12=(x —4)(x? + 2x — 3)
=x—-4)x+3)(x—-1)
The solutions to f(x) = 0 are x = 4,1,—3
26 a
f(2) =8 —5(4) + 7(2) — 2 = 0 so by the factor theorem, (x — 2) is a factor of f(x)
b x3—5x2+7x—-2=(x—-2)(x*+ax+b)
Expanding and comparing coefficients:
x3:1=1
x?:—=5=a-2=>a=-3
x:7=b—-2a=>b=1
x%:—2 = —2b is consistent with b = 1

x3—5x2+7x—2=(x—2)(x2—3x+1)=(x—2)<x—§+§>(x—§—§>

2 2
The solutions to f(x) = 0 are x = 2,%

27 a
f(x) = 6x3 —x%2+k
By the factor theorem, f(— %) =0

f( 1)—0— 6 liksk=1
2/ 7 8 4 B
b

6x3 —x?2+1=2x+1)(ax?+ bx +¢)

Expanding and comparing coefficients:

x3:6=2a=>a=3

x’:—1=a+2b>b=-2

x:0=b+2c>c=1

x%:1 = c is consistent with c = 1

6x3 —x2+1=0Q2x+1)Bx?2-2x+1)

The quadratic factor has discriminant A = (—2)? — 4(3)(1) = -8 <0

The quadratic therefore has no real roots, and so the only real root of the cubic f(x) is at

1
X =—-
2

28 a
f(x) = 2x3 —7x?> —3x+3

2/ “\8 4 2 B
By the factor theorem, since f(x) has integer coefficients, (2x — 1) must be a factor of

f(x).
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b
2x3 —7x?> —3x+3 = (2x—1)(ax?® + bx + ¢)
Expanding and comparing coefficients:
x3:2=2a=>a=1
x2:—7=2b—a>b=-3
x':—3=2c—-b>c=-3
x%:3 = —c is consistent with ¢ = —3
2x3 —7x?>—=3x+3=02x—-1)(x?*—-3x—-3)
The quadratic factor has discriminant A = (—=3)? — 4(1)(-3) =21 >0
The quadratic therefore has two distinct (non-integer) real roots and so the cubic has
three distinct real roots.
29 a
f(x) = 2x3 — px? — 2p2x + p3
f(p) = 2p° —p* - 2p* +p* =0
By the factor theorem, (x — p) is a factor of f(x)
b
2x3 —px? = 2p%x +p3 = (x —p)(ax? + bx + ¢)
Expanding and comparing coefficients:
x3:2=a>a=2
x’:—p=b—-pa=>b=p

1

xt:=2p?=c—pb=>c=—p?
x%:p3 = —pc is consistent with ¢ = —p?
2x* —px? = 2p*x + p* = (x —p)(2x* + px —p?) = (x - p)(2x — p)(x + p)
The roots of the function are p,g and —p
30 a
f(x) = x3 — x? + k?x — k?
f(1) = 1 — 1+ k% — k? = 0 so by the factor theorem, (x — 1) is a factor of f(x) for
any value of k.
b
x3—x?+k?x—k? = (x — 1) (ax? + bx +¢)
Expanding and comparing coefficients:
x3:1=a=>a=1
x2:—=1=b—-a>b=0
xtk?=c—-b=>c=k?
x%: —k? = —c is consistent with ¢ = k?
x3—x?+k?x—k?>=(x—-1([x?*+k?
The quadratic factor is a sum of squares and so has no real roots.
The only real root of the cubic is therefore x = 1.
31
(ax + b) is a factor of f(x) = ax? + abx + a?

By the factor theorem, f(— Z) =0
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b b

fl—=)=0=——-b%+a?
a Cl

b%?(1 —a) = —a®

A L

1 -a
(> HODDER
7 EDUCATION . . . .
LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 7

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



32
f(x) = 2x* — 3x3 + 16x? — 27x — 18 has factors (2x + 1)(x — 2)
2x* —3x3 +16x2 —27x —18 = 2x + 1)(x — 2)(ax? + bx + ¢)
= (2x% —3x — 2)(ax?® + bx + ¢)
Expanding and comparing coefficients:
x*2=2a=a=1
—3=2b—3a=b=0
x?:16=2c—3b—-2a=>c=9
x': — 27 = —=3c — 2b is consistent with b = 0,c =9
x%:—18 = —2c is consistent with c = 9
2x* —3x34+16x%2 —27x—18 = 2x+ 1(x — 2)(x?> +9)
— (2% + 1) (x — 2)(x + 30)
The roots of f(x) = 0 are x = — %, 2, +3i

33

f(x) =x3+ax®*+3x+b

By the remainder theorem, f(—1) =6 =—-1+a—-3+b

a+b=10

f()=1+a+3+b=4+(a+h) =14

By the remainder theorem, the remainder when f(x) is divided by (x — 1) is f(1) = 14
34

x2=5x+6=(x—-3)(x—2)

Let f(x) = 2x3 —15x%> +ax + b

By the factor theorem, if (x — 3)(x — 2) is a factor of f(x) then f(3) = f(2) = 0
f(2) =0=2(8)—15(4)+2a+b
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2a+b =44 (1
f(3) =0=2(27)—15(9) +3a+b
3a+b =81 (2)

(2) = (1):a =37

(2):b=81—-3a=-30

35

Arithmetic sequence of three terms with central value 3 can be expressed as 3 —

u,3,3+u

If these are the roots of the equation then

x3+bx’+cx+d=(x-3+u)(x—-3)(x—-3—-u)
=(x—-3)(x*—6x+9—u?
=x3—9x?2 + (27 — u®)x + 3u? — 27

c=27—-u?d=23u*-27

3c+d =327 —-u? + (Bu?-27) =54
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Exercise 6C
21

1
Sum of the roots: p + q = — 5
3
Product of the roots: pq = =
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3 39
(P—4)(q—4)=pq—4(p+q)+16=§+2+16=7
22

Sum of theroots:p+q=—-=a

a
Product of the roots: pq = T= 3a

a 5pq = 15a

b (p+ q)? =a?
23

3
Sum of the roots: a + f = %
5k
Product of the roots: aff = - =5
a a+ ﬂ + 2= +
3

24
3
Sum of the roots:p + q = —

Product of the roots: pq = o = —-a

9
P—q)?=p*+q*—2pq=({p+q?*—4pq=—+4a
a

25
k
Sum of theroots:p+q ===k
12k
Product of the roots: pq = 1= 2k
(3 3)_3(p+q)_3k 3
P q rq 2k 2
26
Sum of theroots:p +q +1r = _? =-2
4
Product of the roots: pqr = 3
2 2 2 8
pear +par +pqre = (a)(p+q+r) =—3
‘ HODDER
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27
Sum of theroots:a + f +y =

N wN| Gl

Product of the roots: afy = —
1 11 _ytat ,[)’ 5

ap By ya apy 3

28

Sum of the roots: p + q =

Product of the roots: pq =

a P+ +D=pg+30+q+9=2
b For the new polynomial 5x% + bx + ¢ = 0:

vl NU‘II w

33 b
Sum of theroots:p+q+6 =—=—=
5 556
c
Product of the roots: (p + 3)(q + 3) = < =c
b=-33,c=56
29

This answer uses the fact that if a complex number is a root of a polynomial with real
coefficients then its complex conjugate must also be a root. Students can use this result in
examinations without proof.

a Since 3i and 3 — i are roots, the other two roots are —3i 3+1

b Sum of the roots: 3i + (=3i)) + B3—)+B+i)===a=6

1
d
Product of the roots: 3i(—3i)(3 —i)(3+i1) ==-=d
d=9x10=90

30 a Sum of the roots: Ry + R, =~
Total resistance is %
b Product of the roots: R;R, = Z?a
Total resistance is (i + i)_l = RiRy _
Ry R, Ry +R;

31
11
Sumoftheroots:p+q+r+s=T= 11

The arithmetic mean of the roots is therefore 11 ~ 4 = 2.75

32

0
Sumoftheroots:a+ﬁ+y=§=0=>6¥+ﬁ=—)/

-3 1
Full product of the roots: affy = 3= -1=2y=- ]

Substituting the second result into the first:

a+ ,8 = @
HODDER
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33 a
Sum of the roots: p + q =

vl NU‘II w

Product of the roots: pq =

4
PP’ =@+ -2pq=z—c=—5¢
b

For the new quadratic ax? + bx + ¢ = 0:
11

25
c
Product of the roots —=p2q% = (pq)? =

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
Sum of the roots: — o= p>+q?=—

25
For minimum integer coefﬁc1ents selecta =25sob=11,c =4

The quadratic is 25x? + 11x + 4 = 0
34 a

W] =

Sum of the roots:p + q = —

Product of the roots: pq = —

16 49
+—=—

2 2 2 _9pg =
p°+q°={@+q) pq 3-79

b

For the new quadratic ax? + bx + ¢ = 0:
49

)

O —LW]| ™

b
Sum of the roots: —E—p + q*

c 64
Product of the roots —=p%q%? = (pq)? = )
For minimum integer coefﬁ01ents selecta =9sob =—49,c = 64
The quadratic is 9x% — 49x + 64 = 0
35 a Using binomial expansion,
(r+q)?° =p*>+3p°q+3pq° +q¢*> =p> + ¢*> + 3pq(p + @)
b

Sum of the roots:p + q =

Product of the roots: pq =

_P|N~I>Iv—\

2
From parta, p*> + ¢ = (p + q)* — 3pq(p + q)

v =) -50) ()2

c
For the new quadratic ax? + bx + ¢ = 0:
Sum of the roots: — = = p? + ¢* = —
um of the roots: ——=p~+¢° = -

c 1
Product of the roots: o= p3qd® = (pq)d ==

(o]

For minimum integer coefficients selecta = 64 so b = 23,¢c = 8
The quadratic is 64x? + 23x + 8 = 0

0 Friaay
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36  a (Va+B) =a+p+2/af
b
3x2 —30x + 73 =3(x? —10x) + 73
=3((x—-5)2—-25)+73
=3(x—-5)>-2
c
From part b, the vertex of the parabola is at (5, —2).
From the equation, the y-intercept is at (0, 73)
Since the curve is a positive quadratic, the vertex is a minimum,; since it lies midway
between the two roots, and the curve has passed into the positive region to the right of
the y-axis, it follows that both roots must be real and positive.

N

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

d
Sum of the roots: a + f = 10
73
Product of the roots: aff = 3

Fromparta:\/a+\/E=\/a+B+2\/a_=

37

b
Sum of the roots:p + 2p + 3p + 4p = _I: b=-10p

e
Product of the roots: p(2p) (3p) (4p) = 1 = e = 24p*

Then 3b* = 30000p* = 1250(24p*) = 1250¢
38

Sum of the roots:a + f = ~z
3
Product of the roots: aff = <

For the new quadratic ax? + bx + ¢ = 0:

b a B a?+p* (a+p)?—2ap 26
Sum of the roots 2 ﬁ+a ap B 15
c a pB
Product of theroots: —==x—=1
a B «

For minimum integer coefficients selecta = 15 so b = 26,c = 15
The quadratic is 15x2 + 26x + 15 =0

HODDER
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39 a
x-pEx-—x-1=x*-@+Qx+ppx—71)
=x*—(p+q+1)x*+ (pq +qr +rp)x —pqr
Comparing the coefficient in x1, pg + qr + rp = 3a?
b
Comparing the coefficientin x%,p + ¢ + r = —2a
(p+q+r)?=p*+q°+r>+2(pq+qr+rp)
Therefore p2 + g2 +r2 = (p + q + )% — 2(pq + qr + rp) = 4a? — 6a% = —2a?
c
The sum of the squares of the roots gives a negative value; this is not possible if all the
roots have real values, so we conclude that they are not all real.
40 ai
P+q+r)?=pp+q+r)+qlp+q+r)+rlp+q+7)
=p?’+pq+pr+qp+q*>+qr+rp+rq+r?
=p?+q?+7r2+2(pqg+qr+1p)
Therefore p?2 + q> + r> = (p + q + r)?> — 2(pq + qr + rp)
aii
(pq + qr + rp)* = pq(pq + qr + rp) + qr(pq + qr + rp) + rp(pq + qr + rp)
= p?q® + pq’r + p*qr + pq*r + q*r? + pqr® + p*qr + pqr?

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

+ p2r2
P CI +q 7‘ +7r2p? + 2pqr(p+q + 1)
Therefore p?q? + g% + p? = (pq + qr +1p)* = 2pqr(p + q +71)
bi
b
Sum of theroots:p +q +1r = -
d
Product of the roots: pgqr = — 2
bii

alx —p)(x —q)(x —1) =alx® - @+ Qx +pg)(x — 1)
=ax3—alp+q+1r)x?+alpq+ qr + rp)x — apqr
Comparing the coefficient in x1, pg + qr + rp = 2
ci

0
Sumoftheroots:a+ﬁ+y=§= 0

7
Paired products of the roots: aff + fy + ya = — 5
—4
Full product of the roots: afly = - = = -2
Using part ai: a? + f2 +y?2 = (a + B +y)? —2(af + By +ya) =7
cii

a’p?+ B*y* +y*a® = (af + By +ya)* = 2aBy(a+ B +y) = i

4
a’f?y? = (aPy)? = 4
ciii
For the new cubic ax® + bx? + cx +d = 0:
b
Sum of the roots: — o= a’+p2+y?=
- ¢ 22 2.,2 2249
Paired products of the roots: o= a“fc+ Ly +y‘ac = T
‘ HODDER
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d
Full product of the roots: — o= a’B?y? =4

For minimum integer coefficients selecta = 4 so b = —28,c =49,d = —16
The cubic is 4x3 — 28x%> +49x — 16 = 0

Mixed Practice
1 a
f(x) = 3x3 —2x%? — x
=x(Bx?—-2x—-1)
=xBx+1x—-1)
b
Coefficient of x3 > 0 so positive cubic shape

) 1
x-intercepts at x = 0, — 3 1

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

y-interceptaty = 0
y
}

|
=
-

2
y=(x-3)(x+1)5-2x)

Coefficient of x3 < 0 so negative cubic shape

) 5
x-intercepts at x = —1, > 3

y-intercept at y = —15
y

2.5 3
T
-1
—15
(> HODDER
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3 rootsatx = —2,—1,1
y=alx+2)x+Dx-1D=alx+2)(x?—-1)=a(x®+2x*>—x—2)
y(0)=—6=—-2a=>a=3
y=3x3+6x2-3x—6

4 y =0.3(x —p)(x? + k?)
rootatx =2sop =2
y(0) = —5.4 = —0.3pk? = k2 =9
k=3

5 f(x) = (ax + b)3

By the remainder theorem, f(2) = 8 and f(—3) = —27

f2)=8=Qa+b)}=>2a+b=2 (1)

f(—3) = —27 = (-3a+b)>=>-3a+b=-3 (2)

(1)-(@2):5a=5=a=1b=0

6 f(x) =x3+4x®>+ax+b

By the factor theorem, f(1) = 0 and by the remainder theorem, f(2) = 17

f1)=0=14+44+a+b>a+b=-5 (1D

f(2)=17=8+16+2a+b=>2a+b=-7 (2)

2)-1)ia=-2=>a=-2,b=-3

7 fx) =x*+px?—x+q

By the factor theorem, f(—1) = 0 and by the remainder theorem, f(3) = 52

f(-1)=0=1+p+1+q=>p+q=-2 (D)

f3)=52=81+9p—-3+q=>9%+q=-26 (2)

2)—-(1):8p=—-24=>p=-3,qg=1

8 Real coefficients: Complex roots occur in conjugate pairs

5x2 + bx + ¢ = 0 has roots 4 + 7i and 4 — 7i

b
Sum of the roots: — < =8=>b=-40

c
Product of the roots: = = (4 + 7i)(4 — 7i) = 65 = ¢ = 325

5
9

—a 3
Sum of the roots: — = 3 >a=6
10

Sum of theroots:p+q+71+s =
p+tq+r+s 1

M fth ts:
ean of the roots 2 3

8— 2=>k=4
v = =

11

1536
Product of the roots: a(2a)(3a)(4a) = —— = 384

4
24a* = 384
a* =16
a==2
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12 a
Product of the roots: abc = — 3
b

2
Sum of theroots:a+ b + c = -3

1+1+1 c+b+a 2
ab bc ca abc 5
13

Let f(x) = 2x3 + kx? + 6x + 32 and g(x) = x* — 6x%2 — k?x + 9
By the remainder theorem, f(—1) = g(—1)
f(-1)=-2+k—6+32=Fk+24
g(-1)=1-6+k*+9=4+k?

44+ k*=k+24

k?—k—-20=0
(k=5)(k+4)=0
k=5o0r—4

14

With four distinct roots, the problem could be approached by forming five simultaneous
equations in a, b, ¢, d, e by evaluating the function at each root and at x = 0, then using the
calculator to solve the system of equations. With a repeated root, the constructive solution
below is arguably simpler. However, a system of simultaneous equations could be set up using
the three roots, x = 0 and the fact that y'(—3) = 0 as the fifth equation. This approach is given
below as an alternative; it avoids some of the complexity of expanding multiple brackets. Either
way, the final answer can readily be checked by plotting the proposed curve on the GDC.
Roots at x = —3 (repeated root), 1, 3
y=a(x+3)%(x—1)(x—-3)

=a(x®+6x+9)(x? —4x + 3)

= a(x* + 2x3 — 12x% — 18x + 27)
y(0)=27=27a=a=1
y =x*+ 2x3 — 12x% — 18x + 27
a=1,b=2,c=-12,d =—-18,e = 27
Alternatively:

y(-3)=0: 8la—27b+9c—-3d+e=0 (1)

y(0)=27: 0a+0b+0c+0d+e=27 (2)

y(1) = 0: a+b+c+d+e=0 3)

y(3)=0: 8la+27b+9c+3d+e=0 (4)

y'(-3)=0 —-108a+27b—6¢c+d=0 (5)
Solving this system using GDC:
a=1,b=2,c=-12,d = —-18,e = 27
15
Roots at x = —1, 1 (triple repeated root)
y=alx+1)(x—1)3

=a(x>-1)x*-2x+1)

=alx*—2x3+2x—-1)
y0)=1=-a=a=-1
y=—x*"+2x3-2x+1
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16 7}
c
Roots at x = 0 ( triple repeated root), 12 o
y =ax3(x —12) 5
= a(x* —12x?) o
(9) = —27 = —2187 ! ks
— = — = [ —
_ — a__* .3
- T =
17 a

f(x) =2x3—5x2+x+2

f(2) =2(8) —5(4)+2+2=0

By the factor theorem, (x — 2) must be a factor of f(x)
b

f(x) =2x3 =5x2+x+2=(x —2)(ax? + bx + ¢)

Expanding and comparing coefficients:

x3:2=a>a=2

x>:—5=b—-2a=>b=-1

xt:l=c-2b=>c=-1

x°%: 2 = —2c is consistent with ¢ = —1
fx)=(x—-2)2x2—x-1)=(x-2)2x+ 1D(x—-1)

c
Coefficient of x3 > 0 so positive cubic shape
x-intercepts at x = 2,—0.5,1
y-intercept at y = 2

)

[

18 a

f(x) =x3—4x2+x+6

f(-D)=-1-41)+(-1)+6=0

By the factor theorem, (x + 1) must be a factor of f(x)
b

f(x) =x3—4x?2+x+6 =(x+ 1 (ax® + bx +¢)

Expanding and comparing coefficients:

x3:1=a=>a=1

x’:—4=b+a=>b=-5

xt:1l=c+b=>c=6

0 Friaay
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x%: 6 = c is consistent with c = 6
fx) =(x+ 1% =5x+6)=(x+1)(x—2)(x —3)

c
Coefficient of x3 > 0 so positive cubic shape
x-intercepts at x = —1,2,3

y-interceptaty = 6
Yy

(72)
c
9o
=
=
(e)
(7]
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b

19
y=(x—a)’(x—b)(x—c)whereb<0<a<c
Coefficient of x* > 0 so positive quartic shape
x-intercepts at x = b, a (repeated root), ¢
y-intercept at y = a’bc <0

'}

> T
b /a\,c
a’be

20

Let f(x) = x3 + ax? — 7x + 15
f(-3)=0=-27+9a+21+15=>a=—1

By the factor theorem, if f(—3) = 0 then (x + 3) is a factor of f(x)
f(x) =x3—x?>—-7x+15= (x + 3)(ax? + bx + ¢)
Expanding and comparing coefficients:

x3:1=a=a=1

x?:—1=b+3a=>b=-4

x1:=7=c+3b=>c=5

x°:15 = 3c is consistent with c = 5

fx) =(x+3)(x?—4x+5)=(x+3)x—-2+D)(x—-2-1)
The roots are —3,2 + i

0 Friaay
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Let f(x) = ax3 + bx? + 177x — 210
f(2) = 0 = 8a + 4b + 354 — 210
8a +4b = —144

2a+b =-36 (D

b
Sum of the roots: 2 + 12 = — P’
b =—14a (2)
Substituting (2) into (1):
—12a = -36
a=3b=-42
22
Let f(x) = 3x3 — 12x* + 16x — 8
f(0) = -8

f1)=3-12+16-8=-1

f(2) = 3(8) — 12(4) + 16(2) =8 =0

By the factor theorem, (x — 2) must be a factor of f(x)

f(x) =3x3—12x?+16x —8 = (x — 2)(ax? + bx + ¢)

Expanding and comparing coefficients:

x3:3=a>a=3

x?:—12=b—-2a=>b=—-6

xl:16=c—-2b>c=4

x%: —8 = —2c is consistent with ¢ = 4

f(x) = (x —2)(3x*> —6x + 4)

The roots of the quadratic factor are
6+/(-6)’—43)® _  V-12 V3

6 -6

23

b
Sum of the roots: p + q = -

Product of the roots: pq = 2
1,1 _pta__b_,
P q pq ¢

—b =3c

b+3c=0

24

f(x) = (ax + b)*

By the remainder theorem, f(2) = 16,f(—1) = 81
f2)=Ra+b)*=16=2a+b =12 (1)
f(-1)=(-a+b)*=81=>—-a+b=43 (2)

Taking each combination of simultaneous equations and solving
(1)—-(2):3a=+1or+5

b—a=3 b—a=-3
2a+b=2 1 8 5 4
=——,b=— =—=,b=—=
“=73%73 a=3zb="3
2a+b=-2 5 4 1 8
= — — = — = -, b = — =
a=-3bh=3 73 3
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25

f(x) = x* + px3 + 14x? —18x + g

Real coefficients: Complex roots occur in conjugate pairs
3iand 1 — 2i are roots and therefore so are —3i and 1 + 2i
f(x) =(x—-3D)(x+3)(x—1+2))(x—1-2i)
=(x?+9)(x*—-2x+5)

=x* — 2x3 + 14x% — 18x + 45

p=-2,q=45
26 a
4
Sum of the roots:p + q = 3
7
Product of the roots: pq = 3
16 14 26
p*+q*=(@+q) Pa=5 -3 5
b
For the new quadratic ax? + bx + ¢ = 0:
b 26
Sum of the roots: — o= p?+q%= -5
Product of the roots: o p2q? = (7)2 _®
) W P13 T

For minimum integer coefficients selecta = 9 so b = 26,c = 49
The quadratic is 9x2 + 26x + 49 = 0

27 a
(—6)
Sum of the roots: a+b+c+d+e——T—2
b

Translation of the original graph 4 units to the right, so all roots will increase by 4
The sum of the new roots is therefore 2 + 5 X 4 = 22
28 a

2
Sum of theroots:a+b+c+d = —z

3
Product of the roots: abcd = <
b
Horizontal stretch with scale factor§ so all new roots will have values é of the original
roots.

4
The product of the new roots is therefore g X (%) =T

135

29 a
f(x) = 4x3 + 2ax — 7a
By the remainder theorem, f(a) = —10
f(a) = -10 = 4a® +2a*> —7a=>4a®+2a*>-7a+10=0
From GDC, this cubic has a single real root a = —2

b
f(x) = 4x3 — 4x + 14
This cubic has turning points where f'(x) = 0
f'(x) =12x2 -4 =43Bx%-1)

Turning points areatx = + —

V3
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f(—%)=—%+T+ 14> 0

Since both turning points lie above the x-axis, there must only be a single real root to
the equation f(x) = 0.

A coherent argument such as the one above is acceptable; alternatively, students could offer a
well-labelled graph from the GDC indicating the single root.

y

y=4z3 -4z + 14

/1?

30
Let f(x) = 5x3 + 48x?> +100x + 2 —a
48
Sum of theroots: 1y + 1, + 153 = -3
2—a a-—2
Product of the roots: ry 1,13 = g =%
48 a-—2
Ifry+r+r+nrnrnr= Othen—?+ T = 0
a=>50
31 a x2—4x+5=0
Using quadratic formula:
44+ ./(—4)? -4
RGO OO

2
b Letf(x) =x*—4x3+8x>+ax+b=((x%?—4x+5)(x* +px + q)
Expanding and comparing coefficients:
t1=1
3. —4=p—-4>p=0
2:8=q—4p+5=>q=3
La=5p—4q=-12
9:p =5q =15
=—-12,b =15
32
x?—4x+3=(x—-1(x-23)
(x — 1) and (x — 3) are factors of f(x) = x3 + ax? + 27x + b
By the factor theorem, f(1) = f(3) = 0
f1)=14+a+27+b=0=>a+b=-28 @Y
f(3)=27+9a+81+b=0=9a+bh=-108 (2)
(2) —(1):8a =-80
a=-10,b = —18

X
X
X
X
X
a
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33 a
f(x) = (x — a)? g(x) for some polynomial g(x)
By the product rule:
f'(x) = 2(x — a)g(x) + (x — a)?g'(x) = (x — A)[2g(x) + (x — a)g' (x)]
Since g(x) is a polynomial, g’ (x) must also be a polynomial, so (x — a) is a factor of
f(x)
b

Let f(x) = 2x* + bx3 + 11x%2 — 12x + e so f'(x) = 8x3 + 3bx? + 22x — 12
By the factor theorem, f(2) = 0 and by the reasoning in part a, f'(2) = 0
f(2) =0=2(16) +8b + 11(4) = 12(2) + e > 8b + e = =52 (1)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

f'"(2) =0=8(8) +3b(4) +22(2) —12=>12b = -96 (2)
(2):b=-8

(1):e = —52 — 8b = 12

34

Let f(x) = 6x3 —19x% +cx +d
Three roots forming a geometric sequence with second term 1 can be expressed as

rt1andr

d
Product of theroots: r 1 X 1 X r = —g=> d=-6
Also,f(1)=0=6—-194+c+d=> c=13-d =19
35 a

Letf(x) =x3+px?+qgx+c=@x—a)(x—B)(x—7v)
(x—a)x =B (x—vy)=(x*—(a+Bx+af)(x—v)
=x3—(a+B+y)x*+ (af +y(a+B))x — aBy
Comparing coefﬁc1ents
ai x2p=—(a+B+7y)
aii xtig=af+y(a+pB)=af + By +ya

aiii.  x%:c=—afy

b f(x) =x3—6x2+18x + ¢

bi If the roots form an arithmetic sequence then they have values
a—d,a,a+d

Sum of theroots:(a—d)+a+(a+d)=-p=6=3a=6
One of the roots has value a = 2

bii By the factor theorem, if 2 is a root then f(2) = 0
f2Q)=0=8-6(4)+18(12)+c=20+c=>c=-20

Alternatively: q =18 =2 —-d)2+2Q2+d)+ 2 +d)(2—-d)

=12 — d?
d=iv6
c=-2(2+iV6)(2 —iV6) = —2(4 + 6) = —20
c If the roots form a geometric sequence then they have values br~1, b, br
Sum of theroots:b(r 1 +1+71r) =6 (D
Paired product of the roots: br~1b + bbr + brbr~! = 18
b?’(r'+r+1)=18 (2)
2)+~@):b=3
Product of the roots:¢c = —br~t X b X br = —b3 = =27
c=-=27
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 7A

9 a
Vertical asymptotes occur at the roots of the denominator
4x?2 =9
¥ E2
b
5
Whenx =0,y = ~3

x-intercept at root of numerator:

5
4x+5—0=>(—z,0)

Degree of the numerator < degree of the denominator: y = 0 as x = Foo
y

L (s

|
wlon

8
Il
|
[0
8
Il
™

10 a
Vertical asymptotes occur at the roots of the denominator
3x2+2x—8=0
Bx—4)(x+2)=0
4

x=§or—2

b

Wh —0 _10_5
enx =0,y = 8 12

x-intercept at root of numerator:
5x-10=0= (2,0)
Degree of the numerator < degree of the denominator: y = 0 as x — +oo

0 Friaay
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y %)
A c
s z=3 2
3
(e)
®
g
o
: 5
y=0 2 T =
11 a
Require x = —4 to be a root of the denominator. Substituting:
2(-4)?+k(-4)—-12=0
20—4k=0
k=5
b

2x2+5x—12=0
(x+4)2x-3)=0
3

x=—4orx = >
The other vertical asymptote is x = %
c
Whenx =0,y = —i
’ 12

x-intercept at root of numerator:
x+1=0=(-10)
Degree of the numerator < degree of the denominator: y = 0 as x - +oo

Yy
[
Tz =-4 g
y=0 L
(> HODDER
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5]

12

13

a
3x

x2—-2x+1

Vertical asymptotes at roots of denominator:
(x —1)?2 = 0 = x = 1 (multiplicity 2)
Axis intercept:

Whenx =0,y =0

x-intercept at root of numerator: (0, 0)

Degree of the numerator < degree of the denominator: y = 0 as x — Foo

Y
[

Fory =

y=x-+2

z=1
b
The line crosses the curve of the rational function in three places, so there are

three solutions.

a
x—1 _

2x%2+5x—3

Vertical asymptotes at roots of denominator: 2x — 1)(x +3) = 0= x

Fory =

——or—3
ZOI'

Axis intercepts:

1
When x = 0,y=§

x-intercept at root of numerator: (1, 0)

Degree of the numerator < degree of the denominator: y = 0 as x = +oo
y

z=-3
y=0 ﬂ i
y=2z—1 v= Zm;:i—ﬁ
HODDER
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14

b
The line crosses the curve of the rational function in one place, so there is one
solution.

ai

2x — 3

x24+4

kx? —2x+3+4k=0
Real solution when discriminant A = 0
A=4—-43+4k)(k)=0
16k?>+12k—4<0
4k*+3k—-1<0

aii

Factorising:
4k-1D(k+1)<O0

1
The curve intersectsy = kfor— 1<k < 750 the turning points are at y

1
=-—landy = 7
x?—2x—1=0= (x+ 1)? = 0.The turning pointis (—1,—1)

[l
B
%IP*

1
x?—2x+4=0= (x —4)? = 0.The turning point is (4, Z)

T = =
Il

3
Whenx =0,y = ~2

x-intercept at root of numerator:
3
26-3=0>(5,0)

Degree of the numerator < degree of the denominator: y — 0 as x — foo
y
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15 ai
If there are real roots the discriminant A > 0

A= (=(k+1)" —4(k)(=2k —2) = 9k + 10k + 1 = (9% + 1)(k + 1)
1
AZOforkS—lorkz—5
aii
x+2

1
— has tangenty = k fork = —1 or 5

3
y(1) =— > indicating that the range lies outside the interval between these.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

The curve of y = v

1
The range of f(x) is f(x) = — g or f(x) < -1

b
Vertical asymptotes occur at the roots of the denominator
x2—x—-2=0
x-2)(x+1)=0
The asymptotes are x = 2 and x = —1
f(0) = —1 so the y-intercept is at (0, —1)
The x-intercepts occur at the roots of the numerator: x + 2 = 0 so (—2, 0) is the only

one.
c
Degree of the numerator < degree of the denominator: y = 0 as x = +oo
y
y= L - T
-2
-1
z=-1 =i
‘ HODDER
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16
_ xX—a
YT E-hGE -0
Vertical asymptotes x = b,x = ¢
x-intercept (a, 0)
. a
y-intercept (0, - E)
Degree of the numerator < degree of the denominator: y — 0 as x — foo
a

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Y
[

gle

17 a
x2—6x+10 x(x—3)—-3(x—-3)+1 1
f(x) = = ( ) = 3 ) =x—-3+——
-3 x—3 x—3
As x = to0o,y - x — 3 soy = x — 3 is an oblique asymptote of the curve.
A=1B=-3

b B0
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b

Solving intersections of y = f(x) and y = k:
x?—6x+10=k(x—3)
x2—(6+k)x+(10+3k)=0
This has real roots when discriminant A > 0
A=(6+k)?—4(1)(10+ 3k)

=k?—-4
A =0whenk = +2
The curve has turning pointsaty = +2
k=2:x>-8x+16=0>x=4
k=-2:x2—4x+4=0>x=2
Turning points are (2, —2) and (4, 2)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

c
Vertical asymptote(s) at root(s) of denominator: x =3 =0= x =3
10
f(0) = ——
(0) = -5

x-intercept at roots of numerator: (x — 3)? + 1 = 0 has no real solution so there are no
x-intercepts.

s , 10
Axis intercept is (0, - —)

3
d
Yy
f
yg=x—3
T
_10
3
z=3
18 a
2x* —x—3  (2x*—=5x) +4x—3 _ +4x—3_ 2(2x—=5)+7
2x—5 2x—':‘_; - 2x—5_x 2x —5
= 2
x + +2x—5
A=1,B=2C=7
b

Asx — Fo0o,y - x + 2 soy = x + 2 is an oblique asymptote of the curve.

0 Friaay
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c
f(x) =k
2x>—x—3=k(2x = 5)
2x> —(1+2k)x+ (5k—3) =0
This has real roots when discriminant A = 0
A=(1+2k)?-42)(5k—13)

= 4k? — 36k + 25

36 +v362—400 9
A =0whenk = — 3 =§i\/ﬁ

9
The curve has turning pointsaty = 5 +V14

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

3 9 9 9
f(0) = 3 < 5~ V14 so the curve lies outside the intervalz —V14 < y < 5 +V14
9 9
The range is f(x) < 57 V14 or f(x) > 3 + V14
d
5
Vertical asymptote(s) at root(s) of denominator: 2x —=5=0=x = >

3

x-intercept at roots of numerator: (2x — 3)(x +1)=0

Axis intercepts are ( ) (-1,0), ( )

(¢

Y
s

A

s

19
x+c

fGo) = x?—3x —
f(x) = k has a solution for all real values k
x+c=k(x?*—-3x—c)
kx?—Bk+1Dx—ck+1)=0
Require that ¢ is such that x has at least one real solution for any value of k.
The quadratic has real roots when discriminant A > 0
A=CBk+1)?+4(k)ck+1)

=k?(9+4c)+ (6 +4c)k+1
Require that A > 0, for all k. Since this is a positive quadratic, this will be the case if
there is no real root.

0 Friaay
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_ —(6+4c)£/(6+4c)2 —36—16c  —3—2c+V4c? + 8¢
- 2(9 + 4c¢) a 9+ 4c
For this not to have distinct real solutions, 4c® + 8¢ < 0
4c(c+2)<0
—-2<c<0
Considering the boundary cases:
x
If c = 0 then f(x) = ——,
c en f(x) 7 3x
= 0 is not valid for the condition.
x—2
Ifc=—-2thenf(x) = ————
¢ then f(x) x2—3x+2
x—2
f(x) = e _( 1)(x)— 2 has range f(x) # 0,so ¢

= —2 is also not valid for the condition.
Hence the solutionis —2 < ¢ <0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

which has range f(x) # 0,so ¢

20 a
x>+ 2ax+a*—-1 x(x+a)+alx+a)—1 1
f(x) = = =x+a-—
x+a x+a x+a
Asx = to0o,y - x + asoy = x + a is an oblique asymptote of the curve.
b

Consider solutions to f(x) = k
x*+2ax+a*—1=k(x+a)
x*’+QRa-k)x+a*>—ka—-1=0
This has real roots when discriminant A > 0
A=QR2a-k)?-41)(a?—ka-1)
=k*+4
Since A > 0 for all values of k, the range is f(x) € R
The function is the sum of a linear equation and a simple rational; if there is no interval
not within the range then the function cannot have a turning point.

Knowing the shape the curve must take, the above argument is robust but may feel insufficient.
Using calculus to show that there is no stationary point is also an option:

Quotient rule gives

(x+a)(2x +2a) — (x? + 2ax + a? — 1)

f'(x) =

(x + a)?
x> +2ax+a*+1
- (x + a)?
_(x+a)P+1
~ (x+a)?

Stationary point occurs when f'(x) = 0

(x + a)? = —1 has no solution, so there is no stationary point.
(> HODDER
7 EDUCATION . . ] .
LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 9

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



Alternatively, you could observe that the function is

2 _

which is a translation a units to the left of the curve

-1 1
=x ——
X

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

2
gx) = z

Then irrespective of the value of a, the curve will have the same characteristics as g(x) which
has no stationary point.

c
Vertical asymptote(s)at root(s)of denominator: x +a =0 = x = —a
a’? -1
Whenx =0,y = a

x-intercept at root of numerator:

(x+a)>—1=0> (—a—1,0)and (—a + 1,0)
y

f

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 10

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



Exercise 7B

11

2x3+x2—6x>0

x2x—-3)(x+2)>0

Positive cubic with three distinct roots; the value will be greater than zero between the

first and second root and for values greater than the third root.

Y
[

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

-2

[T

3
—2<x<00rx>§

12 a

Letf(x) =2x3+x2—-7x—6

f(2) = 2(8) +4 —7(2) — 6 = 0 so by the factor theorem, (x — 2) is a factor of f(x)
b

3x3 +2x2 <x3+x%2+7x+6

2x3+x>—-7x—-6<0

(x—2)2x*+5x+3)<0

x—2)2x+3)(x+1) <0

Positive cubic with three distinct roots; the value will be less than zero for values less

than the first root and between the second and third roots.

3
xS—Eor—ls x<2

0 Friaay
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13 a
Let f(x) = 2x% + 11x%2 + 12x — 9
f(=3) =2(—-27) + 11(9) + 12(—3) — 9 = 0 so by the factor theorem, (x + 3) is a
factor of f(x)
b
11x%2 — 4 >5—12x — 2x3
2x3+11x2+12x—9>0
(x+3)2x*+5x—3)>0
x+3)2x—-1D)xx+3)>0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Positive cubic with a repeated root at x = —3 and a single root at x = 0.5.
The value will be greater than zero for values greater than the third root.
]
A
-5 3
> T
S 1
x —_—
2
14

Letf(x) = (x —a)(x — b)(x — ¢)
Positive cubic with three distinct roots; the value will be greater than zero between the
first and second root and for values greater than the third root.

a b
> T
c
a<x<borx>c
(> HODDER
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15

Let f(x) = (x — a)(x — b)?

Positive cubic with a single root at x = a and a repeated rootatx = b > a
the value will be less than zero for values less than the first root.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

> T

> ¢

x<a

16

Let f(x) = x* —4x2+3x+ 1

From the calculator, f(x) < 0 for —2.26 < x < —0.251

17

Let f(x) = 2x5 — 6x* +8x%2 -1

From the calculator, f(x) > 0 for —0.933 < x < —-0.377 or 0.371 < x < 1.76 or x >
2.18

18

Letf(x) =3In(x?+1)—x—2

From the calculator, f(x) < 0 for —0.727 < x < 1.48 or x > 13.7

19

Letf(x) =x3+bx?+cx+d—2

f(x) is a positive cubic. If the solutions to f(x) < 0 are x < 3,x # 1 then 1 must be a
repeated root ang 3 the upper root

[

/'\/3

f(x) = (x = 1D*(x = 3)
=(x*-2x+1)(x—3)
=x3—-5x?+7x-3

b=-5c¢=7d=-1

0 Friaay
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5]

20

Letf(x) =ax3+bx?+cx+d—3

f(x) =0at—4,-1,1.5

f(x) is a cubic which is positive for x less than the least root or between the two greater
roots so f(x) must be a negative cubic.

f(x) =alx+4)(x+1) (x — ;)

Require that all coefficients are integers, so a must be an even value (and negative, by
the above argument).
If a = —2k then

f(x) = —2k(x+4)(x+ 1) (x — ;)

= —k(x?+5x +4)(2x — 3)

=k(—2x3—7x%2+ 7x + 12)
a=—-2k,b=-7k,c=7k,d= 12k + 3 for any positive integer k.
If |a| is the least possible then k = 1
a=-2,b=-7,c=7,d=15

21
3x
Let f(x) = G130 —2) -2

Vertical asymptotes are x = —3 and x = 2
From calculator, f(x) > 0 for -3 <x < —lor2 < x < 2.27

22
x—2
Let f(x) = —1 4
) = Gy D
4
Vertical asymptotes are x = —4,x = —2 and x = 3

The graph is not defined for x < —4

4
From calculator, f(x) < 0for —3.26 <x<—2o0r —1.54<x<129%o0rx > 3
23
A function is strictly decreasing when its derivative has a negative value.
f'(x) = 24x% — 4x3 = 4x%(6 — x)
f'(x) <0forx>6

Properly, the question asked for ‘decreasing’ not ‘strictly decreasing’. This would also allow for
f’(x) = 0 to be within the solution, so the answer would be x = 0 or x = 6.

This nuance is not detailed within the IB syllabus.
24
A function is strictly increasing when its derivative has a positive value.
f'(x) = 4x3 — 12x2% — 4x + 12
=4(x3-3x>—-x+3)
=4(x?-1)(x—3)
=4(x—-—1D(x+1D(x-3)
f’(x) is a positive cubic with roots at +1 and 3
f'(x) >0for—-1<x<1lor x>3

As with question 23 above, since the question says ‘increasing’ not ‘strictly increasing’ the
correct answer would actuallybe =1 <x <1 orx > 3

HODDER
EDUCATION

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 14

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




25 a
_3x+5
)
Vertical asymptote at root(s) of denominator: x = 2

. 5 . . 5
x-intercept(s) at root(s) of numerator: x = — 5 So intercept is (— 3 O)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

y-intercept when x = 0: (0, — ;)
Degree of numerator equals degree of denominator. Horizontal asymptote at ratio of
lead coefficients. As x = too,y = 3

13

3x+5

xX—2
Solutionis 2 < x < 13

=4>=>3x+5=4x—-8=>x =13

Single intersection:

26 a
2x —7

Y= x+1
Vertical asymptote at root(s) of denominator: x = —1

x-intercept(s) at root(s) of numerator: x = % so intercept is (%, 0)

y-intercept when x = 0: (0, —7)
Degree of numerator equals degree of denominator. Horizontal asymptote at ratio of

lead coefficients. As x = foo,y — 2
y
/

y=3 /

]

-7
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b )
Check | =7 S
ecking for an intersection point: P x—3 5
2-2x—3=2x-7 o
—4x+4=0 o
(x—2)2=0 £
The line is tangent to the curve. ;o
2x—1
< x—3hassolution—1<x<2Zorx > 2
x+5
27 a
2x —a
Y= x+b
Vertical asymptote at root(s) of denominator: x = —b

x-intercept(s) at root(s) of numerator: x = % so intercept is (g, 0)

y-intercept when x = 0: (O, - %)
Degree of numerator equals degree of denominator. Horizontal asymptote at ratio of

lead coefficients. As x = too,y = 2
y
3

Ll \
8

|
Syl

2x—a
x+b
3x+3b=2x—a
x=—a—3b

2x —a

x+b

= 3 has a single solution:

> 3 hassolution—a—3b<x < —-b

0 Friaay
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28
Finding boundaries to the solution set:

The vertical asymptote of the rational function is x = — %

px+1
16x+1=px’+@p+Dx+4
px?+ (4p—15)x+3 =0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

The expression on the left is a quadratic with roots x = « or § (with @ < f3)
The solution to the inequality therefore has boundaries x = — %, x=aandx =f

The solution has the formx < q or r <x < 3

Then—%=3orﬁ=3

Y

1 1 1 ‘
—— = 3:p = ——, the quadratic is — = x? /

p 3 3 —49.2 g

49 /] e
- ?x +3=0
x% 4+ 49x — 9 = 0 has roots —49.2 and 0.183
The solution to > x + 4 would be =9
px+
x < —49.2 or 0.183 <x<3 7
1

p= —§,q =—-49.2,r =0.183

If 3 is a root of the quadratic then (x — 3) is a factor
sopx?+ (4p —15)x +3 = (x —3)(ax + b)

Comparing coefficients:

x%b=-1 b"
x:4p—15=b—3a=-1-3a
xtp=a

Substituting: 4a —15=—-1—-3a=>a =2
and the other factor is (2x — 1)

The solution to ~22 > x + 4 would be /
px+1
x<—-050r05<x<3 z

p=2,q=-05r=05 /

0 Friaay
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Exercise 7C e
o
25 a b 5
y ()
Yy A (72}
[ T
Q
=
[
s
i |
> T
y=0 | fo 2
1
T
y=20 9
3 —2 =
“ =t T=-3 Fr= 3
26 a b
y v
I A y=|z|+2
y=|z+2|
9
\2
9
2 A
/ -3
@ T
-3 3
B=i2 r=-—2
27
Yy
T
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(72)
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9o
=
=
o
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29

6
<
¢

30 From calculator: —1.28 < x < 0.720
31 From calculator: x < —4.80 or — 3.32 < x < 4.80
32 From calculator: x < —0.146 or 0.180 < x < 0.967

33 a

4
b x<—4 orx> s
(> HODDER
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34 a

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

b
3el*l > 5

<1 > 1n(3)
X n3

<in() orx > ()
X n5 orx n3

35
Asx - oo,y 5> —0c0o=2a<0
Point of symmetry isatx = —3so b = 3

y(0) =—-1=albl+c (€Y)
y(—%)=0=c+a|b—2| (2)

1
(-momerap-]

(1):3a+c=-1 (4)
(2):25a+c=0 (5

4)—(5):05a=-1=>a=-2
a=-2,b=3,c=5

0 Friaay
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36

[2x + 3| =3x+7

Left arm of the modulus graph: 2x + 3 < 0
2x+3=-3x—-7=25x=-10=>x= -2
Right arm of the modulus graph: 2x +3 > 0

2x + 3 =3x + 7 = x = —4 contradicts condition; no intersection

y
[}

/

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

|2x + 3| >3x+7
x <=2

37

[x2 —=3x—5|=3—x

Left arm of the modulus graph: x? —3x — 5 < 0
x2—3x—-5=x—-3=2x*—-4x—-2=0=>x=2+6

Only x = 2 — /6 satisfies the condition.

Right arm of the modulus graph: x> —3x —5 > 0
x2—3x—-5=3—-x=2x*-2x—-8=0=>(x—-4)(x+2)=0=>x=40r—2
Only x = —2 satisfies the condition.

The solutions are x = —2 or 2 — V6

38

Boundary points when |x? — 5x + 4| = 2

Left arm of the modulus graph: x> — 5x + 4 < 0

x> —5x+4=-2=>x*-5x+6=0=>x=2o0r3
Both values satisfy the condition

Right arm of the modulus graph: x> — 5x + 4 > 0

5++vV17

x2—5x+4=2:>x2—5x+2=0:>x=T
Both values satisty the condition

) 5—-+17 5++vV17
The solutions are x < — or2<x<3orx> —

‘ HODDER
7 EDUCATION ) , .

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 21

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

> T
5—/17 2 3 5+/17
. : [x? —5x + 4| > 2

39 Split into three regions:
Case l: x < -1
Ix+1|+|x—1]=—-1—-x+1—x=—-2x

—2x=x+4
=73
Case2: -1 <x<1
[x+1]|+|x—1=x+14+1—x=2
2=x+4
x = —2 which contradicts the case presumption
Case3:.x>1
[x+1|+|x—1]=x+14+x—-1=2x
2x =x+4
x=4

4
The solutions are x = ~3 or 4

40 Split into three regions:

Case 1: x <=

E——1
Bx—1=1-3x;x+|2—x|=x+2—-x=2
1-3x=2

!
=73

Case2:§<x<2
Bx—1]|=3x—1; x+|2—x|=x+2—-x=2

3x—1=2
x=1
Case3: x> 2

[Bx—1]|=3x—1; x+|2—x|=x+x—2=2x—-2
3x—1=2x-2
x = —1 which contradicts the case presumption

The solutions are x = — 3 orl

0 Friaay
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41 a
_{=x* x<0
xlxl_{xz x>0
Y
T
0
b
x|x| = kx

x<0: —x?=kx=>x=0,—k
x>0:x>=kx=>x=0k
Solutions: x = 0, +k

42

0 ) <0
fGe) + Gl = {Zf(x) £(x) > 0
Y

(p,29)

N

(r,2s)

|y =) + lf(=)

0 Friaay
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43 Split into cases:
Case 1: x < —a?

"
S
|x + a?| = —a? — x; |x — 2a?| = 2a®> — x 5
—a?—x=2a*—x >
No solution 3
Case 2: —a? < x < 2a? X
|x + a?| = x + a?%; |x — 2a?| = 2a% — x ;o
x+a?=2a*—x
2x = a?
a2
*=3

Case 3: x > 2a?

|x + a?| = x + a?; |x — 2a?| = x — 2a?
X+ a?=x—2a?

No solution

44

Letf(x) =x?+4x—-7=(x+2)*-11

f(x) has range f(x) > —11

For |f(x)| = k to have four solutions, require that f(x) = k has two distinct solutions
and also f(x) = —k has two distinct solutions; this can only happen for 0 < k < 11

45

Letf(x) = x3—12x + 4

f'(x) =3x2-12=3(x+2)(x — 2)

f(x) is a positive cubic, so the stationary point at (—2, 20) is a local maximum and
(2,—12) is a local minimum.

f(x) = k has
one solution for k < —12 or k > 20
two solutions for k = —12 or 20

three solutions for —12 < k < 20
For |f(x)| = k to have four solutions, require that

f(x) = k has one solution and f(x) = —k has three distinct solutions: No such values
or

f(x) = k has two distinct solutions and f(x) = —k has two distinct solutions: No such
values

or

f(x) = k has three distinct solutions and f(x) = —k has one solution: 12 < k < 20
There are four solutions for 12 < k < 20

0 Friaay
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Exercise 7D

17 a

Ti) has vertical asymptotes at roots of f(x): x = —=3,x = 0,x = 4

.. . 1 .
Local minima of f(x) are maxima of oo and vice versa:

—_has min at (—2, %),max at(2, - i)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

f(x)
1
If f(x) — +oo then > 0
Y
T=-3 z=4
(_23é)
=0 -
(2:_'é
o =4
b

[f(x)]? has the same roots as f(x), intersections with the axis become minima.
Local minima at (-3, 0), (0, 0), (4,0)
Positive stationary points keep the same character, negative stationary points take the

opposite character:
[f(x)]? has max at (—2,9) and (2, 25)
Y

]
(2,25)
(_Za 9)
> 1
-3 0 4
(> HODDER
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18 a
fx )has vertical asymptotes at roots of f(x) x=—-6x=0x=3x=6
Local minima of f(x) are maxima of — and vice versa:

f(x)

m has max at ( -4, — —) and (5 - —) min at(Z ;)

If f(x) — +oo then ﬂ -0

IV

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

[f(x)]? has the same roots as f(x), intersections with the axis become minima.
Local minima at (—6,0), (0,0), (3,0),(6,0)
Positive stationary points keep the same character, negative stationary points take the

opposite character:
[f(x)]? has max at (—4, 64), (2,4) and (5,9)
Y

[}
(—4,64)
(2,4) (5,9)
z
-6 0 3 6
(> HODDER
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19 a 7}
c
% has vertical asymptotes at roots of f(x): x = —1,x = 3 =
S
.. ) 1 . 1 1 =
= ez _ - o
Local minima olf f(x) allre maxima of @ and vice versa: I has max at (1, 3) 2
— _ 1 __1 T
f(0) = -2 so %0 > 2
f(x) > 550~ S
f(x) 5 ;

y

A

>» X

[f(x)]? has the same roots as f(x), intersections with the axis become minima.

Local minima at (—1,0), (3,0)

Positive stationary points keep the same character, negative stationary points take the
opposite character:

1
) has max at (1,9)

f(0) = —2so [f(x)]? = 4

f(x) - 5so0 [f(x)]? - 25
Y

1

y=25

(1,9)

20 a (3, - 1)

4

b (3,16)
1

c 2 +2=3=>x=2
(21 _4)

(> HODDER
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5]

21
x replaced by x — %2 translation % to the right

x replaced by 3x: horizontal stretch with scale factor§
T

The total transformation is a translation (Z> followed by a horizontal stretch
0

) 1
with scale factor 3

22
x replaced by x + 3: translation 3 to the left

. . 5
x replaced by %x: horizontal stretch with scale factorE

The total transformation is a translation (_03) followed by a horizontal stretch

with scale factor%

23

f;(x) = 3x? + 4x

Horizontal stretch scale factor %: replace x with 2x

f,(x) = 12x2 + 8x

Translation ((1)) Replace x with (x — 1)

f3(0) =12(x —1)?2+8(x — 1) = 12x? — 16x + 4

24

f1(x) = f(x)

Translation (g) Replace x with (x — 4); f,(x) = f;(x — 4)
f,(x) =f(x — 4)

Horizontal stretch scale factor %: replace x with 2x; f3(x) = f,(2x)
f3(x) =f(2x — 4)

Translation (g) fo(x) =f5(x) +3

f,(x) =f(2x —4) + 3

Vertical stretch scale factor 2: fs(x) = 2f,(x)

fs(x) =2f(2x—4)+ 6

25

fy(x) = f(x)

Vertical stretch scale factor %: f,(x) = %fl (%)

1
() = 5 )
/0 B
Translation (_ 4): fo(x) =f,(x) — 4
1
f3(x) = gf(x) -4
Horizontal stretch scale factor 2: f,(x) = f; (g)
1
f4_(X) = §f(§) —

_01): Replace x with (x + 1); fs(x) = f,(x + 1)

£ (x) = lf(x er 1) —4

Translation (

HODDER
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5]

26
A: Reflection in the y-axis. Replace x with (—x); g(x) = f(—x)

B: Translation (5) Replace x with (x — 5); g(x) = f(x — 5)

0
a)
A then B: g(x) = f(—(x — 5)) = f(5 — x)
b)
B then A: g(x) = f((—x) — 5) = f(—x — 5)
27
f(x) has vertical asymptotes at roots of ﬁ x =4
f(x) has x-intercepts at vertical asymptotes of — :(=3,0),(5,0)

()

Local minima of ﬁ are maxima of f(x) and vice versa:

No local minima or maxima

Ifﬁ—> 5 as x — too then f(x) —>—
f( 5 — has y-intercept at (5, 0) so f(x) has y-intercept (0 ;)

Yy
[
=il

S

28
[f(x)]? has the same roots and vertical H
asymptotes as f(x); intersections with the axis
become minima.

Local minima at (+3,0), (11, 0), vertical

asymptote x = 0. y = [f(=)]*

Positive stationary points keep the same

character, negative stationary points take the (5,9)

opposite character:

[f(x)]? has max at (5,9) 1 /\ .

f(x) » —1lasx = oo so [f(x)]? = 1 —

f(x) > —o0 as x - —oo so [f(x)]? - oo \{ : \ﬁ/’_—m
z=0
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29
Transforming f(x) to g(x) = f(ax—b)
f1(x) = f(x)

f,(x) = f;(x — b) = f(x — b): Translation (8)
Roots are at (b + p, 0), local maximum is at (b, c). Shape is the same.
f3(x) = f,(ax) = f(ax — b): Horizontal stretch with scale factor%

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Roots are at ( 0) local maximum is at (2, c). Shape is the same.

1
f4(x) f3 (x) f(ax b)’

Vertical asymptotes are at x = ba local minimum is at (Z —) Asx = F00,y -0

Y
[

: Reciprocal transformation

(bv E)

T = —%b z= "%b
30
Transforming f(x) to g(x) = [f(ax + b)]?
f1(x) = f(x)
f,(x) = f;(x + b) = f(x + b): Translation (_Ob)
Intercept is at (a — b, 0), vertical asymptote is x = —b. Shape is the same.
f3(x) = f,(ax) = f(ax + b): Horizontal stretch with scale factor%
Intercept is at (? 0) vertical asymptote is x = — 2 Shape is the same.
f,(x) = [f3(x)]? = [f(ax + b)]?: Squaring the functlon
Intercept is at (T’ 0) is now a local minimum, vertical asymptote is x = — S.

Horizontal asymptote is now y = c?
y

[
y = [f(az + b))

y=c
V .
a—b
) B
(> HODDER
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5]

31

There are infinitely many possible answers to this question, due to the periodic nature of the
sine curve. It would be expected that a student would either give a general answer or a sensible
low absolute value answer.

The solution below approaches the problem as a graph transformation question; there are more
direct approaches available and a student familiar with the sine curve might be expected to be
able to read the values of a, b, ¢ directly from the graph without this working, citing amplitude
. .2m .

a, period > and left shift c.
Transforming f(x) = sinx to g(x) = asin(bx + ¢)
f; (x) = sin(x)

. —C
f,(x) = f;(x + ¢) = sin(x + ¢): Translation ( 0 )
f;(x) = f,(bx) = sin(bx + c¢): Horizontal stretch with scale factor%

f,(x) = af;(x) = asin(bx + c): Vertical stretch with scale factor a

7T

g(x) has period 5?7[ — (— ?) = 4, sin x has period 2
Horizontal stretch scale factor is 2 = % =>b= %
g(x) has amplitude 4 = a

g(—%) =—4= 4sin(c—g)

. N _r .
sm(c—g)— 1—sm(2mr 2) for integer n
—Zmr—E
¢ 3
“ab=tie=(m-d)
a=4, —2,c— n 3 T 1 2
An alternative solution setis a = —4, b =z,c= 2nn+?”
32

Transforming f(x) = sinx to g(x) = a + sin(bx + ¢)
f; (x) = sin(x)

f,(x) = f;(x + ¢) = sin(x + ¢): Translation (_OC)

f;(x) = f,(bx) = sin(bx + c¢): Horizontal stretch with scale factor%

f,(x) = a + f3(x) = a + sin(bx + c¢): Translation (2)

g(x) has period g — (— g) = 2?11’ sin x has period 27

Horizontal stretch scale factor is é = % =>b=3
g(x) has central value —1 = a

g(_f) =—2=—1+sin(c—n)

3
T

sin(c — ) = —1 = sin (Znn — E) for integer n

2nm + z
C =4NT + =

2
1

a=-1,b=3,c= (2n+§)n
HODDER
EDUCATION . , . .
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33
f; = f(x)

2\,
Translate ( 0).
£00 = f(x - 2) = fx - 2)
Stretch horizontally with scale factor i:
g(x) =f,(5x) = f(5x — 2)

. 2
Alternatively, g(x) = f (5 (x - E))

This is a horizontal stretch with scale factor% followed by a translation (0(')4)
34
fi(x) =ax®?+bx+c
2y,
Translate ( 0).

Lbx)=fi(x—2)=a(x—2)>+b(x—2)+c=ax?>+ (b—4a)x +c—2b + 4a
Stretch horizontally with scale factor 3:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

_ x =E 5 b—4a 3 _ 2
f3(x)—f2(3) 9x + 3 x+c—2b+4a=x"+cx+ 14
Comparing coefficients:

a
==1 1
Xy €Y)
b —4a
xl: 3 =¢ (2
kxo:c —2b+4a=14 (3)
(1D):a=9
(2):b=3c+36

(3)ic—2b=-22
Substituting: —5¢ — 72 = —22
c=-10
b=6
Solution: a =9,b = 6,c = —10
35
f(x) =ax3+bx +c
Stretch horizontally with scale factor %:
f,(x) = f;(2x) = 8ax3® + 2bx + ¢
-1
Translate( 0 )
f300) =f,(x+1)=8a(x+1)3+2b(x+ 1) + ¢
= 8ax3 + 24ax? + (24a + 2b)x +8a + 2b + ¢
8ax3 + 24ax?® + (24a+ 2b)x + 8a + 2b + ¢ = 2x3 + 6x% — bx — 2
Comparing coefficients:
x3:8a =2 (1)
x%:24a =6 (2)
x1:24a+2b=-b (3)
x%:8a+2b+c=-2 (4)

(1),(2):a=%
(3):3b=—-6=>b=-2
4):c=0

0 Friaay
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36
fi(x) =f(2x + 1)

Translate (0(')5): f,(x) =f;(x —0.5) = f(2(x — 0.5) + 1) = f(2x)
Horizontal stretch scale factor g: fi(x) =1, (z x) = f(3x)

A translation right by half a unit followed by a horizontal stretch scale factor % would

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

achieve the result.

Alternatively:
f,(x) = f(2x + 1)
Horizontal stretch scale factor E: f,(x) =1, (% x) =f(3x + 1)

Translate <1> f,(x) =f; (x — —) = f(3x)
0

A horizontal stretch scale factor > 3 followed by a translation right by one third of a unit

would achieve the same result.

37
f;(x) = tan (3x - g)

Vs
Translate <_ Z); f,(x) =1 (x + E) = tan(3x)
0 6
Reflect through y-axis: f3(x) = f,(—x) = tan(—3x)
38

fl(x) = 8x
Vertical stretch scale factor 5: f,(x) = 5f;(x) =5 x 8%

g1(x) = Zxc
Translate (0) 1g,(x) =gi(x —c) =2 =27 %x2%

Stretch horizontally with scale factor %; g:(x) =g,(3x) =27¢x 23 =2"¢x8*

Require that 5 X 8% = 27¢ x 8%
5=27°¢
c=-—log,5

0 Friaay
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Exercise 7E

15
e
f(—x) = ()—_6——x2_6—_f(x)

f(x) is an odd function.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

16
f(—x) = tan(—x) + 3(—x)? = —tan x + 3x?
f(x) is neither odd nor even.

17
f(—x) = (—x) cos(—x) — sin(—x) = —x cos x + sinx = —f(x)
f(x) is an odd function.

18 a

fx)=(x+4)?+3, x>k

This is one-to-one for k = —4
b

y=f(x) = (x+4)>+3,x>—4hasrangey > 3
Jy—3=x+4
x=—4+y—-3=£"()

Changing variables:
f~1(x) = —4 + Vx — 3, with domain x > 3

19 a ,
0=(e-3f -

The vertex of the full function is at (Z , — Z)

The function f(x) can be one-to-one with reduced domain x < =

N W

b
_f()_( 3)2 5 <3h - 5
y=fx)=(x > 4,x_2 asrangey = 7
L5_3
YryTzox
3 5
= — — —_ = f_l
x=3 fy +2 o)
Changing variables:
f-l()—?’ +5 ith domain x > >
X =5 X 4,Wl omain x = 1
(> HODDER
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20 a

y = f(x) =
2y =3 —2x
2x =3—2y
3—2y _
> =)
Changing variables:

1) = 22 _ g

Therefore f(x) is self-inverse.

— 2x

X =

)
c
9o
whd
=
(e)
o
o
)
X
[
=

b
A self-inverse function will have range and domain that match; the domain of f~1(x) is
x€R

21 a

f(x) is even so f(—x) = f(x)

g(x) is odd so g(—x) = —g(x)
_f(=x) _ fx)

"N =0 g - T

Therefore h(x) is an odd function.

b
The sum of an even function and an odd function is neither even nor odd.
For example:
f(x) = 1 is an even function since f(x) = f(—x) for all x
g(x) = x is an odd function since g(—x) = —x = —g(x) for all x
Letk(x) =f(x) +gx) =1+x
k(1) =2,k(-1)=0
Then k(a) # +a for a = 1; therefore k(x) is neither odd nor even.

22

If f(x) is even then f(—x) = f(x) for all x in the domain of f(x)

If f(x) is odd then f(—x) = —f(x) for all x in the domain of f(x)

If both are true then f(x) = —f(x) = f(x) = 0 for all x in the domain of f(x)

23

f(x) =|x—1|+ |x + 1]

Then f(—x) = |-x — 1| + |—x + 1|
=|x+1]+|x—1]
= f(x)

Therefore f(x) is even.
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24 a

f(x) =x3+6x2+9x—2for-5<x<1

f'(x) =3x?2+12x+9=3(x%?+4x+3) =3+ 1(x+3)
Stationary points are at x = —1 and x = —3
f(—=3)=—-27+54-27-2=-2
f(-1)=-14+6-9-2=-6

The end point values are f(—5) = —22 and f(1) = 14

Positive cubic with two stationary points will have local maximum at the first and local
minimum at the second.

Then the function is one-to-one for =3 < x < —1

It is alternatively one-to-one for —1 < x < lorfor—5<x < -3

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
If f(x) has domain —3 < x < —1 then it has range —6 < f(x) < —2
f~1(x) has domain —6 < x < -2

If f(x) has domain —5 < x < —3 then it has range —22 < f(x) < —6
f~1(x) has domain —22 < x < —6

If f(x) has domain —1 < x < 1 then it has range —2 < f(x) < 14
f~1(x) has domain —2 < x < 14

25 a

f(x) =x*—8x2+5=((x%?—-4)2—-11forx >k

f'(x) = 4x3 — 16x = 4x(x%? — 4)

Stationary points are at x = 0, £2; the positive quartic has two local minima at x = +2
and a local maximum at x = 0.

The function is one-to-one for x > 2sok = 2

b
f(2)=16—-32+5=-11
The range of f(x) for x > 2 is f(x) = —11
Therefore, the domain of f~1(x) is x > —11

26 a
f(x) =e*—4xforx <k
f'(x) =e*—4

There is a single stationary point at x = In 4, which must be a local minimum since the
function grows without limit as x — —oo
Then the domain over which f(x) is one-to-one is x < In4sok =In4

b
fn4) =4 —4In4
The range of f(x) for x <In4is f(x) = 4(1 —In4)
Therefore, the domain of f~1(x) is x > 4(1 —In 4)

0 Friaay
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27 a
Let _f()_2x+1
AT
Bx—-2)y=2x+1
3xy—2x=2y+1
2y +1
:f_l
3y =2 )

X =

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2x+1

Changing variable: f~1(x) = = f(x)

Therefore, f(x) is self-inverse.

b
The domain of f~*(x) must be the same as the domain of f(x) if the function is self-

. 2
mverse: x #+ 3

28

Lety =f(x) =ax+b

r="2 = r10)

Changing variable:

£10x) = x—b>b

If the function is self-inverse then f(x) = f~1(x)
x—b =ax+b

x ‘ b=a%*x+ab
x(1—a?) =b(1+a)
(a+1)A—-a)x=b(1+a)
For the above to be true for all values of x in the domain, one of the following must be
true:
e b = 0andthe domainisx = 0 (which is a trivial case)
e b=0,a=1:f(x) =x
e a=-1:f(x)=b—x

29 a
Let g(x) = f(x) + f(—x)
Then g(—x) = f(—x) + f(x) = g(x) so by definition g(x) is an even function.

b
Let h(x) = f(x) — f(—x)
Then h(—x) = f(—x) — f(x) = —h(x) so by definition h(x) is an odd function.

c
Since f(x) = % glx) + %h(x), it follows that every function can be expressed as the sum
of an even and an odd function.

0 Friaay
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5]

xX+c
(x+c)y=3—-2x
x(y+2)=3—-cy

3—cy

= = f_l
=70 o)
Changing Variable:

PN e

@ =377

If f(x) is self-lnverse then f(x) = f~1(x) for all x in the domain of f(x)
3—2x 3-—cx

x+c x+2
B-2x)(x+2)=@B—-cx)(x+¢)
—2x2—x+6=—cx?+ (3 —-c?)x+3c
x?(c—2)+x(c*—4)+6—3c=0forall x
(c—=2)[x>+(c+2)x—3]=0forallx

This can only be true for ¢ = 2, orif x =

—(c+2)+Vc2+4c+16
2
Since the domain is (assumed to be) x # —2, the only possible solution is that ¢ = 2

Mixed Practice

1 a
Vertical asymptotes occur at the roots of the denominator
2
xX==or—2
3
b

Whenx =0,y = —i so the y-intercept is (0, — %)

The x-intercept occurs at the root of the numerator: (— %, 0)

c
Degree of the numerator < degree of the denominator: y — 0 as x — foo
Y
)
z=-2 oy — %
y = f(z)
_1
= 2
y=0 g
1 \
4
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5]

2 ai
Vertical asymptotes occur at the roots of the denominator
x=4
aii
As x = 00,y = x so the oblique asymptote is y = x — 2
b
x*—4x —2x _x(x—6)

fx) = —4  x—4

When x = 0, y = 0 so the y-intercept is (0, 0)

The x-intercepts occur at the roots of the numerator, so there is also
an x-intercept at (6, 0)

Cc
Yy

93]

6x +x%—2x3<0

Boundaries are at solutions to 2x3 — x2 — 6x = 0

x2x+3)(x—-2)=0

The function is a negative cubic with three distinct roots: — %, 0 and 2

It will take negative values between the first and second root and for x greater than the
third root:

3
—E<x<00rx>2

4 a

Let f(x) = x3 —3x%> —6x + 8

f(—2) = —8 — 12 + 12 + 8 = 0 so by the factor theorem, (x + 2) is a factor of f(x)
b

x3—1>3(x%+2x—-3)

x3-3x2-6x+8=0

(x+2)(x>—5x+4)=>0

x+2)x—-1Dx—-4)=0

f(x) is a positive cubic with three distinct roots: —2,1 and 4

It will take positive values between the first and second root and for x greater than the

third root:

—2<x<lorx =>4

HODDER
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5
2x*—5x2+x+1<0
From calculator, —1.62 < x < —0.366 or 0.618 < x < 1.37

6
Inx <e
From calculator, 0 < x < 3.04 0or 7.01 < x < 8.56

sinx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

7 a
¥y
f

(31 (1) (1,m)

ol
(SIE]

y = | cos 3z|

b
1
|cos 3x]| =EforOSxS7t

1 T
cos3x=+—>=>3x=nn+—
2 3
1 + T
X =—-nm+t—
3 9 2m 4m 5m 7m 8
Within the interval, the solutions are x = E, —n, —n, —n, —n, =
9°9’9’9’9"’ 9
8 a
Yy
\
y =16 — 3|
™
5
3
‘ HODDER
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b
Intersections of the two graphs:

44 x=5-3x=>x=

N[O -

44+x=3x—-5=>x=

1 9
|4+x|S|5—3x|forxSZorx2§

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
Intersections of the two graphs:
3—x=—-1-5x=>x=-1
3—x=1+5x=>x=§
1
3—x> |5x+1|for—1<x<§
10 a
= |f(x)| takes the parts of f(x) that lie below the x-axis and reflects them through the
X-axis:
Yy
1
5 |()|
y=2
\/ m
5
2
pi=r1
‘ HODDER
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b 7}
c
y = f(|x|) is composed of f(x) for x > 0 and its reflection through the y-axis: o
y 5
z=-1 z=1 8
o
)
X
o
5
=

11 a
T )has vertical asymptotes at roots of f(x) x=0,x=3
Local minima of f(x) are maxima of ﬁ and 4
Vice versa: = i

1
m has min at (2 2)

1 1 ,

f(x) > —2asx — ooso@ —3 @1
f(x)—>—ooasx—>oosom—>0 P il

b
[f(x)]? has the same roots as f(x), intersections
with the axis become minima.
Local minima at (0, 0), (3,0)
Positive stationary points keep the same character, negative stationary points take the
opposite character:
[f(x)]? has max at (2,4) 4
f(x) - —2asx » —oso [f{(x)]? - 4
f(x) - —o0as x = o0 so [f(x)]? >

L
a 3
(> HODDER
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c
Transforming y = f(x) to y = f(2x — 1):

f;(x) = f(x — 1): translation ((1))
New roots are (1,0) and (4, 0), max is at (3,2). Asymptote remains y = —2
f,(x) = f;(2x): Horizontal stretch with scale factor%

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

New roots are (%, 0) and (2,0), max is at (%, 2). Asymptote remains y = —2
y

12

f(x) =3*+37%

Then f(—x) = 37 + 3* = f(x)
Therefore f(x) is an even function

13 a
f(x) = —(x — 3)? + 5 so the vertex is at (3, 5)
The function is therefore one-to-one for x = 3

k=3

b
Lety =f(x) =—-(x—3)2+5x=>3
5—-y=(x—3)

x=3+,5—y=f1(y)
Changing variables, f™1(x) =3 + V5 — x
The range of f(x) is f(x) < 5 so the domain of f™1(x) isx < 5

14 a
f(x) is even so f(—x) = f(x) for all x
ax?+bx +c=a(—x)>+b(—x) +c
ax?+bx+c=ax?>—bx+c
2bx = 0 for all x
Therefore b = 0

b
g(x) is odd so g(—x) + g(x) = 0 for all x
psinx + gx +r+psin(—x) + q(—x) +r =0
sin(—x) = —sin(x) so 2r =0
Therefore r = 0

0 Friaay
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5]

c
If h(x) is both odd and even, then h(x) = —h(—x) and h(—x) = h(x) for all x
Therefore h(x) = —h(x) for all x

Hence h(x) =0

15 ai
Real roots when discriminant A > 0
A= (—2(k+1))" —4(k)(7-3k) =0
16k? — 20k +4 >0
4k? —=5k+1=>0
4k-1)(k-1)=0
Positive quadratic in k will have values greater than zero outside the roots
1
k < 2 01:_k =1
aii
The range of the function f(x) is the set of values k for which f(x) = k has real

solutions.
2x —7 _

x2—2x—3
2x — 7 = kx? — 2kx — 3k
kx? —2(k+1Dx+7-3k=0

From part a, the range of f(x) is therefore f(x) < i orf(x) >1

b
7 . . 7
Whenx =0,y = 350 the y-intercept is (0, 5)

x-intercept at root of the numerator: (%, 0)

Vertical asymptotes occur at roots of the denominator: (x —3)(x +1) = 0so x = —1
orx =3
Degree of the numerator < degree of the denominator: y = 0 as x = +oo
)
[}
7
3
y=0 =
7
2
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16 a 7
y S
5
o)
7
o
)
>
[
)
=
3
-
_3 3
2 2
b
[2]x] =3 =2
2|x]| =3 =42
2|x| =3+ 2
[x] =15+1

x=+1(15+1)=425,+05

17
f(x) is a positive quadratic with roots at a and b.
y = f(|x]) is composed of f(x) for x = 0 and its reflection through the y-axis:

a
0<b<a
Both roots are positive
y

b B0
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b
b<0<a
Only one root is positive
]

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

—a a

ab

c
Both roots are negative

ab

18 a
filx)=f (5): Horizontal stretch with scale factor 3

f,(x) =fi(x—6)=f ( ) Translation (8)
= f(x) is transformed toy = f ( ) by a horizontal stretch with scale factor 3 followed

by a translation 6 units in the positive x direction.

b
Alternatively:

f; (x) = f(x — 2): Translation (3)
f(x) =f; (g) = f(g - 2) f ( ) Horizontal stretch with scale factor 3

y = f(x) is transformed to y = f(T) by a translation 2 units in the positive x direction

followed by a horizontal stretch with scale factor 3.

0 Friaay
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19 a
f(x) is a positive quadratic with roots at ++/3.
= |f(x)| takes the parts of f(x) that lie below the x-axis and reflects them through the
x-axis
— has vertical asymptotes at the roots of f(x) and since f(x) — o as x —» too,

(7))
c
i)
-
=
o
(/2]
©
Y= f() k-
S

b
The curves intersect when |f(x)| = %
fOlf(x)| =1
f(x) =1
2 4
x ==2

Then |f (x)] S%for—23x<—\/§or\/§<xsz

20
f(x) = |x+al + |x + b|
Assume without loss of generality thata < b

—a—b—2x x<-b
Then f(x) = b—a —-b<x<-a
a+ b+ 2x —a<x

The graph of y = f(x) looks like this:
y

H E”D‘B%Eoﬁ

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 47

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



f(x) =|x+al|l + |x + b|;a < b, noy axis shown
Require that f(x) is even so the graph must be symmetrical through the y-axis, line x =
0

Since the graph is only symmetrical through x = — % - g thena = —b

You could alternatively use algebraic manipulation or by breaking into cases to show that a =
—b is the only condition which allows f(x) to be even, but a graphical approach is tidily direct.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

21 a
f(x) = (e* — 4)? — 9 is a quadratic in e*, which has its vertex at ¥ = 4, or x = In4
Therefore, restricting the domain so that f(x) is one-to-one, x < k where k = In4

b
Lety = f(x) = (¥ —4)>—9,x <In4
e*—4=—J/y+9
x=In(4—y+9)=1"1()
Changing variables:
f~1(x) =In(4 —Vx +9)
As x - —oo,f(x) = 7 so the range of f(x) forx <In4is -9 < f(x) <7
Then the domain of f71(x)is -9 < x < 7

22 a

f(x) = xe%5*

f'(x) = e%5* + 0.5xe%%* = (1 + 0.5x)e%>*

f"(x) = 0.5e%5* + 0.5(1 + 0.5x)e%>* = (1 + 0.25x)e%5*

b
The stationary point of f(x) from part a is when 1 + 0.5x = 0 so x = —2
The function is therefore one-to-one if the domain is restricted to x = —2
k=-2

c
As x = oo, f(x) > oo so the range of f(x) is —2e™! < f(x)
Therefore, the domain of f~2(x) is x > —2e™!

23 ai
3x
fi =
) x2+1
3(—x 3x
f(—x) = # = ————— = —f(x) for all x in the domain of f(x)

(—x)2+1 x2+1
Therefore, f(x) is an odd function.

aii
The graph of f(x) will have degree 2 rotational symmetry about the origin.
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bi
f(x) =k
kx?—-3x+k=0
This quadratic has real solutions if discriminant A > 0
A=(-3)>—4k?*=9—-4k*>0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

4k?—-9<0
bii
Therefore, the range of f(x) is — E <f(x) < E
33 3
k_i Ex —3x+§—0=>x -2x+1=0=>(x-1)?=0=>x=1

3 3 3
k=—E:—Ex2—3x—5=0=>x2+2x+1=0$(x+1)2=0=>x=—1

The turning points are (—1, - g) and (1» 2)

c
= |f(x)| takes the parts of f(x) that lie below the x-axis and reflects them through the

x-axis
Y

Intersections of y = |x| and y = |f(x)]:

Then If(x)l > |x| for —V2 < x <2

24 a

x is in the domain of g(x) if f(x —a) # b
x—a+ta

x #0,2a

0 Friaay
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b
Transforming f(x) to g(x) =

1 .
f(x—a)-b"
f;(x) = f(x — a): Translate (8)
Local minimum at (a, 0), passes through (0, b) and (2a, b)
f,(x) = f;(x) — b = f(x — a) — b: Translate (—Ob)
Local minimum at (a, —b), passes through (0, 0) and (2a, 0)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

f3(x) = m g(x): Reciprocal transformation

Local maximum at (a. - %),
vertical asymptotes at x = 0,x = 2a. Asx - +, g(x) » 0
y

4

_J .

r=0 T =2a
25 a
2x—1 2(x+2)-5 5
x+2 x+2 x+2
b
, 5
f'(x) =m> 0 for all x
c
Since from part b, f(x) is always increasing, the range is the interval between f(—1) =
—3 and f(8) = %
—3<f(x) <15
di
Lety = f(x) = —

xy+2y=2x—-1
x(y—-2)=-1-2y

1+ 2y

= = f_l
*=5- )
Changing variables:

1+ 2x

100 = 5

Range off(x) is —3 < f(x) < 1.5 so the domain of f71(x) is =3 < x < 1.5
‘ HODDER
7 EDUCATION . , .
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dii, diii
y

'y

y=£"(2)

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

ei
y = f(|x|) is composed of f(x) for x > 0 and its reflection through the y-axis:
3

i

dii
1
f(lx]) = — 7

1
20x = 1= =7 (x| +2)

2=

|x| =

NoJ ]

x =4

O N

b B0
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26 a

x> +7x+10 x(x+1)+6(x+1)+4 4
f(x) = = X+ 6+——
x+1 x+1 x+1

Asx - oo, f(x) > x+6
The oblique asymptoteisy = x + 6

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
If f(x) = k has real solutions then x + 7x + 10 = k(x + 1) has real solutions
x>+ (7 -kx+(10-k)=0
This quadratic has real solutions if its discriminant A > 0
A= (7-k)?>—4(10—-k)
k? —10k+9=0
(k—1)(k-9) =0
This is a positive quadratic in k, which will have values greater than zero for k outside
the roots.
k<lork=9
Therefore, the function f(x) has range f(x) < 1 or f(x) > 9
Whenk =1:x2+6x+9=0=(x+3)?sox = -3
Whenk =9:x2-2x+1=0=(x—1)?sox =1
The turning points are (—3,1) and (1,9)

c
When x = 0,y = 10 so the y-intercept is (0,10)
x-intercepts are at the roots of the numerator: (x + 2)(x +5) = 0 so (—5,0) and
(_21 O)
Vertical asymptote at the root of the denominator: x = —1
Asymptotes intersect at (—1,5) which also lies on the liney = x + 6
Y

A

y=2r+7

0 Friaay
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5]

d
The two graphs intersect where

x2+7x+10=2x+7)(x+ 1)
x>+ 7x+10=2x2+9x +7
x>+2x—-3=0
x+3)x—-1)=0

x247x4+10

=2x+7

x=-3orl
x4+ 7x+10
— < 2x+7for—-3<x<-lorx>1
x+1
e

= |f(x)| takes the parts of f(x) that lie below the x-axis and reflects them through the
X-axis

f
For there to be two solutions, ¢ must either equal zero or be a value above the local
maximum of the left part of the function and below the local minimum of the right part
of the function.
c=0orl<c<9
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27 g
f()_owc2+bx+c ) = 1 dx+te 2
e v e BV " f(x)  ax?+bx+c %
Vertical asymptotes of g(x) are the roots of its denominator. )
3 5 b
ax2+bx+c=a<x—§)(x+4)=ax2+§ax—6a g
O

Comparing coefficients: b = Ea, c=—6a S

f( ) — ax?+bx+c

dx
e) + k for some remainder k.

a
E(2x2+5x—12)=dx2+(d+e)x+e+k

has oblique asymptote y = x + 1 so ax? + bx + ¢ = (x + 1)(dx +

Comparing coefficients:d = a,d + e = ga soe = ga
Putting all these details together,
5
a(x2 +§x—6) _ 2% +5x—12
a (x " %) 2x+3

If f(x) = g(x) then [f(x)]? = 1 so f(x) = +1
2x%2 +5x—12 = +(2x + 3)
2x2+3x—15=00r2x2+7x—9=0
2x2+3x—15=00r(2x+9)(x —1) =0

-3 ++v129 9

x=Torx=—§or1

x = 2.09,—-3.59,—4.50r1

f(x) =

28
This is a question equivalent to the final question in exercise 7E.

Rather than again find the inverse and equate the functions, a different approach is shown below
for variety. Students may consider which they find more elegant.

3x —5
f(x) = ,X + —C
If f(x) is self-inverse then f(f(x)) = x for all x in the domain.
3x—=5
3 ( x+c ) —° .
3x—=5 n
x+c '€

3B3x—=5)—-5(x+c)

3x —5+c(x+c)
4x —15—-5¢c = 3+ c)x? + (c¢? — 5)x
B+c)x?+(c?—9)x+15+5¢c=0
B+)[x*+(c—3)x+5]=0

For this to be true for all x in the domain, c = —3
(> HODDER
7 EDUCATION ) . . .
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 8A

28 a E=ﬁ+ﬁ=a+%b

b ﬁ=5—c’+ﬁ’=§(b—a)

N DG = DA + AG = —b + 2a
29 a BA=BO+0A=a—-b

b W=ﬁ+§ﬂ=§(a+2b)

(]

MN = M0 +ON = —~a+(a+2b) ==(4b —a)
2 -2 0 8
30 a 3a—c+5b=3<—1>—<2>+5<1)=< O)
3 3 -5/ \-19

—4
b |b—2a|=‘( 3)

-11

=16 +9 + 121 = V146

31
3k

(—k) = |kV9+1+1=+V11]k| =22
k

k| = 2V11

k=42V11

32

=3 =,/449t2 + (t — 1)2

)

44+9t2+t2-2t+1=9
10t2 —-2t—4=0

141
10
33
1/ (5 -1 1/ 8
So-w-3((6)-2())-3(5)
3 2 -3
34

b B0
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35 a ")

P :

V36+36+9126\ 1/2\ 1 E

Unitvectoris = 6 |==| 2 |==Qi+2j—Kk) i
9 3 3

-3 -1 g

b ~

[

[5)

=+v16+1+4+8=5 =

4
b
2V2

8
A vector of magnitude 10 parallel to the vector is ( -2 )
42

36

2+3p 3
a+pb=< p >=k<2>
2+3p 3

Require p = 2k and 2 + 3p = 3k
Solving by substitution: 2 + 6k = 3k

37

21+ 4 0
ey = (s 1) =4(1)
A+2 0

Require A+2 =0
A=-=2

38

)

Then V2 (—1 has magnitude 6

1
21 -2
i)
21—-1
912 — 121+ 5 =150
912 —124—-45=0
302—41-15=0
(BA+51-3)=0

A=3 >
=3or—3

=vV16+1+1=3V2

39

la+ Ab| = =412 —8A+ 4+ 22 +422 — 41+ 1 =52
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40

2t
t+3 )
—2t—1

= J4t2 +t2+ 6t +9 +4t2 + 4t + 1

=/9t% + 10t + 10

2

= [(ed) +E
- 3 9

. - V65
From the completed square form, this has minimum value =
41 a
3sin6
—3cosf || = \/9 sin2§ + 9cos2f + 16 =25 =5, independent of the value of 6
4
b
1+ 3sinf
1-— 3cos€> = /2 + 6(sin@ — cos @) + 25
4

= V(27 + 6(sinf — cosb))

sinf — cosf = ﬁ(%sin@ —%cosé’) = \/E(sin(é’ _%))

So this has maximum value V2

1+ 3sinf
1 — 3 cos @ || has minimum value f27 +6V2
4

This can be easily interpreted geometrically:

Then

The position vector describes the locus of a circle parallel to the x-y plane, radius 3 and centred
at (0,0,4)

The value found is the distance between (1, 1, 0) and the point on the circle furthest from it,
which will by rapid consideration be at (—3\/5, —-3v2, 4-).

The distance between them is v/ 27 + 6v2.
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Exercise 8B

6

16
-2
AB =|-2|1=3
1
3
Then distance AC = >
17 a

AB=|-5|,CA=(—-10|=24B
1 2

Therefore the three points are collinear.

b
AB:BC = 1:3
18 a
1
AB=|b—a|= (-z) =v1+4+25=+30
5
b

1 1
E(a+b) =§(3l—2]—3k)

19 a

. 4 . 2 . 1

BC = ( -2 ) soBD = (—1) and so D has position vector b + BD = ( 2 )
—10 -5 -2
b

-3
AD = (13) so AD = V9 + 169 + 49 = V227
—7
20

d=(2i—3j) + (i—j) = 3i— 4

21
(TN /2
AB = (12) =BCsoc=b+BC = (13)
-3 -1
22 a
L 2 1
Require CD = BA = (—2) sod = (2)
-1 2
b
=V4+4+1=3
-2
BC = ( 3 ) = /4 + 9 = V/13. Since adjacent sides have unequal length,
0

parallelogram ABCD is not a rhombus.
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6

23 a
L 6
Require CD = BA = (—3) so D has coordinates (13,4, —6)
-6
b

— 1
If M is the midpoint of AC then AM = EAC

2

1

= E( 8 ) so M has coordinates (6,3,1)
—2

c

14
If N is the midpoint of BD then BN = %ﬁ)) = %( 2 ) so N has coordinates (6,3, 1)
—14
M and N are the same point; the midpoint of AC is also the midpoint of BD (the centre
of the parallelogram).

24 a

BC=c—b

- 1 1 1

MN=MA+AN=§(a—b)+§(c—a)=§(c—b)
b

D — 1 —
BC and MN must be parallel, with MN half the length of BC, since MN = EBC

25
If M is the midpoint of AB, N is the midpoint of BC and so on then:

1 1 1 1
m = §(a+b),n = E(b +c),p= E(C-I_ d),and q = E(d+a),
Then the vectors joining consecutive vertices of MNPQ are

N 1
MN=n—m=§(c—a)

N 1
NP=p—n=§(d—b)

., 1
QP=p—q=§(c—a)
. 1

MQ=q—m=5(d—b)

Since MN = 613 and NP
= W, it follows by definition that MNPQ is a parallelogram.
26 a

. 15 3+p
AC = ( 5 ) kAB = k(q 2)
-5 -3

3
Inspecting the third component, k = <
So3+p=9=>p=6
Andq—2=3=q=5
b
AB:BC=k: (1—-k)=3:2

HODDER

EDUCATION Mathematics for the IB Diploma: Analysis and approaches HL 5

LEARN MORE © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




6

27

. -2
AB = (—5)
4
-0.8

—_— 2—>

AC = EAB so C has position vector a + ( -2 ) =22i—j—24k
1.6

28

2+ 2t
Ez( 4+t )soAB=J4+8t+4t2+16+8t+t2+81+90t+25t2=3
—9 — 5¢
Squaring: 30t% + 106t + 101 =9
15t2 +53t+46 =0
(t+2)(15t +23) =0
23

= -2 J—
t or 1t
29 a
1 1 . .
=§(p+q) =§(3l+3]—4k)
b

—_— — 1
Require QR = MQ = E(_i + 5j + 2k)

1 13
R has coordinates (5,7, 0)
30 a
o\ 1 1
D has position vectord = b + 3 (c—b) = 3 (2b + ©)
1 1
M has position m = E(a +d) = E(Sa +2b+¢)
b
o 1 1
X has positionx = a +Z(C —a) = Z(Sa +c)

N 1
BM=m—b=g(3a—4b+c)

. 1 1 1,
MX=x—m=E(9a+3c—2(3a+2b+c)) =E(3a—4b+c) =§BM
This shows that B, M and X are collinear, with BM : MX = 2 : 1

31 a
2 1
d=b+§(c—b)=§(3b+2c)
1 _I.
e—a+g(a—c)—g( a—c)
f=b+§(a—b)=§(2a+b)
b

1
DF =f —d = 7= (10a - 4b — 6¢)

FE=e—f=g(5a—2b—3c) =E(1Oa—4b—6c) =ZDF
This shows that D, F and E are collinear, with DF : FE =4 :5
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32 a
A5 = (57 %) =DCandBC = (73 ) = 4D

None of these vectors can be the zero vector so, by definition, ABCD is a parallelogram.

b

=J(k =22+ Q2 +k)?=+2k?+8
BC = \/(k —3)? + 2k + 1)2 = \/5k? — 2k + 10
For ABCD to be a rhombus, these two side lengths must be equal
2k* +8 =5k* -2k + 10
3k?—2k+2=0
The discriminant for this quadratic is (—2)? — 4(3)(2) = —20 < 0 so there are no real
roots.
There is no real value k for which the adjacent side lengths are equal, so ABCD cannot
be a rhombus.

Exercise 8C

19 a

2 4
a-(b+c)=<— )(— >=8+8+3=19
3
1 0
(b—a)- (d—c)-( )-(2)=0+6+1=7
1

C

4
(b+d)- (2a)—(—2> (—4>=16+8+8=32
4 2

20

Y _3

AB=<5)

_—1—> —

AB-0A (-6+10-3) 1
|AB||OA]| V35V17 V595

1
6 = cos~ ! (—) = 87.7°
V595

cosfO =

21

. 4\ _ 6
AC=<O ),BD=<—4->
AC-BD 244+0-1 23

|AC|IBD| ~ V17453 /901

23
6 = cos™?! (—) = 40.0°
V901

cosfO =
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22
pq -1+1+4 4 2
cosf = = ===
Ipllql V6vV6 6 3
23
9_a-b_10_2
OSY = 1am T 15 3

2
6 = cos~?! (5) = 48.2°

_cd_ -15 5
Telld] 9x12 36

0 = cos™?! (—%) = 98.0°
25 a
1 0
b-d=<3)-(—2)=(1><O)+(3x(—2))+(—1><1)=—7
-1 1
0 1
d-b=<—z>-(3>=(0><1)+((—2)><3)+(1><(—1))=—7
1 -1

Scalar product of vectors is commutative because it can be represented as the sum of products
of elements, and arithmetic multiplication is commutative.

b

2 6
a-(b+c)=<1)-(3>=2x6+1x3+(—2)x(—4)=23
-2 —4

2 1 2 5
a-b+a-c=<1)-<3>+<1)-<0>
-2 -1 —2 -3
=2%x1+4+1x3+(-2)xX(-1D]+[2Xx5+1x0+(—2) % (-3)]
=74+16 =23

Scalar product of vectors is distributive across addition because it can be represented as the sum
of products of elements, and arithmetic multiplication is distributive across addition.

C
5 5
(c—d)-c=<2 )( 0>=5><5+2x0+(—4)x(—3)=37
—4 -3
5\]>° /5 0
wrca-f(o) (o) ()
=3 -3 1
=(524+024+(-3))—[5X0+0x(=2)+ (=3) x 1]
=34+3 =37
EHDCBCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 8
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6

d
3 3
(a+b)-(a+b)=<4)-(4>=3x3+4x4+(—3)x(—3)=34

G-

la]> + |b|>+2a-b =

2 2
(1) +
-2
=(2%24+1°+ (-2 +(1?2+32+(-1?

+2(2x14+1%x3+(-2)x(-1))
=9+11+2(7) = 34

26
9 a'b
COoS =
|al|b|
112
2 8|b|
|b| =3
27

1 5
Position vectors of the vertices are a = (1) ,b= ( ) = (1)
3 2
1 3
Sob—a=<—2),c—a=< ) —c—( 2)
-2 1
2> A=

(b—a)-(c—a) 4+0+2
cosA =

|b —al|c—al Vov17 \/_
B (b—a)-(b—c) -3+4+2 1 LB = 7450
cosB = = = = 74.
b —allb — c| Vovia V14
C =180°— A — B = 44.5°

61.0°

28
2 5 -3
b—a=<—2),c—a=<0),b—c=<—2>
3 —4 7
(b—a)-(c—a) 10+0-—12 2
cosA = = = — = A =943°

|b —al|c—al V1741 V697
B (b—a)-(b—c) -6+4+21 19 ISP
COS = = = = .
b —al|b— | V1762 V1054
29 a

C=180°—A—B =31.5°
1 3 5
()= () -l
2 7 0
2 4 -2
b—a=<1>,c—a=<2 ),b—cz(—l)
5 -2 7

A (b—a)-(c—a) 8+2-10 05 A= 90°
COoS = = = —
|b —al|c—al V30v24
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b

b—a):(b-— —4—-1+35 5
cosB=( a) - ( C)= =£=>B=41.8°
|b—allb—c| V30V/54 3

C =180°—A—B =48.2°

C

Area = %(AB)(AC) = %«/%x/ﬂ = 6V5
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30

cos @ —u
Ipllql

1 3V2

V2 1xlq]

lql =6

31

4+ 2t 3
Require (—1 + t) (5)
2+t 1

12+6t—5+5t+2+t=

12t = -9
. 3
4
32
t 2t
Require<0>-<1>=0
-3 t
2t2 -3t =0
t—O3
=05
33

aisaunitvectorsoa-a=1
a is perpendiculartobsoa-b =10
a-(2a—3b)=2a-a—3a-b=2

34 a

_—6=2x\ [T
g~ (<7272 - (1
5 2

Requireﬁ‘)-ﬁ =0

42+ 141 —-68—-414+10=0
101 =16

A=16
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b
From part a, C = 90°

2.2 -7
b—a=<22.6>,c—a=<4>
-3 2

(b—a)-(c—a) -154+904—-6 69
Cos A = = = = A = 68.7°
|b —al|c—al V524.61/69 V524.6

B=180°-A—-C=213°

(72)
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C

-9.2
BC = (—18.6) so BC = \/455.6 . From part b, BC = /69
5

1 1
Area = E(BC)(AC) = E\/455.6\/6_ = 88.7

35

a and b have equal magnitude: |a| = [b|soa-a=b-b (x)
(3a+b)-(@a—3b)=0

Expanding and rearranging:
=>3a-a+b-a—9a-b—-3b-b=0
=3(a-a—b-b)—8a-b=0

=>8a-b=0 by (*)

a‘b=0

= ais perpendicular to b

36 a
AC=AB+BC=AB+AD=a+b
BD=BA+AD=AD—-AB=b—-a

b
(a+b)-(b—a)=a-b+b-b—a-a—b-a
=b-b—a-a
= |b|* — |a|?

c
If ABCD is arhombus then |a] = |b]so(a@a+b)-(b—a) =0
That is, AC L BD, the diagonals are perpendicular.

37 a
If A and B have position vectors a and b respectively, then OA=aand OB =b = 1a
By definition, if OB = 104 then 0, A and B are collinear.
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b

. 2
BA=(1-2) (1)
4

o [2A-12
CB=< A=2
40— 4

Require BA-CB =0

1-ADMAA—-244+21-2+161—-16) =0

1-1)R212-42)=0

A=2

(4 = 1 represents the degenerate case where A and B are collocated, which does not
represent a solution to the problem posed).

c)

B is the point on extended line OA for which the distance from C to the line is shortest.

-8
C_B’=<o>soc‘3=\/8_=4x/§
4

(72)
c
9o
=
=
(e)
(7]
©
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=
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Exercise 8D

26 a

(o)

—4
Line direction vectord = b —a = ( 2 )

-3
3 —4
Line has equationr = (—1) + /1( 2 )
5 -3
b
0 3 —4
If (0, 1, 5) lies on the line then (1) = (—1) + A ( 2 ) for some A
5 5 -3

From the y element: 1 =24 —1sodA =1
This does not provide a consistent solution for the other two elements.
(0,1,5) does not lie on the line.

27

-1 2
The required line has vector equation r = ( 1 ) + A (—1)
2 -3

X
r= <y>; rearranging each of the three element equations to solve for A gives

z
_x+1_y—1 z—2

2 -1 -3

The Cartesian equation is

x+1 y—-1 z-2
-1 -3
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28 2
1 -1 S
The lines have direction vectors d; = <—1 and d, = < 4 5
3 1 o
Acute angle 8 between the lines is such that g
dl - dz _2 g
cosf = = =
d[ldz|l  1V11V18 S
0 = 81.8°
29

2 2
The lines have direction vectors d; = (—1) andd; = ( 1 )
3 -1
d; -d, =4 —1 — 3 = 0 so the two lines have perpendicular vectors.
Both lines pass through the same point (0, 0, 1) so they are perpendicular within a
single plane.

Remember to show or observe that the two vectors are coplanar. While it might be argued that
any two lines with perpendicular direction vectors should be considered perpendicular, general
usage would say that if the lines do not intersect, they are simply skew and not truly
perpendicular.

Any pair of parallel lines are necessarily coplanar, and it is standard to also require that two
lines must cross at 90° angle (that is, must intersect and so be coplanar) to be considered

perpendicular.
30
Substituting x = 3,y = =2,z = 2:
(x+1
=
4-y
{ —=2
3
2z 4
(3 =372

The point (3, —2, 2) does not lie on the given line.

31 a
lv| =/0.52 + 22 + 1.52 = /6.5 = 2.55 m s~ *

b
r = (12i — 5j + 11Kk) + t(0.5i + 2j + 1.5k)

c
Solving for r = (16i + 8j + 14Kk):
124+ 05t =16 (1)
—-5+2t=8 (2)
11+ 15t =14 (3)
4(1) — (2):53 =56
This is a contradiction, so the particle does not pass through the point (16, 8,14)
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32 n
13 0.5 15
Att=3,r1=<2)andr2=<6> §
9 —1.5 8
Then |r; — 1| = 4/12.52 + (—4)2 + 10.52 = v/282.5 ~ 16.8 m B
=
33 a ;°
x = 0soA = 3.Thepointis (0,12,5)sop =12, =5
b
-1
Direction vector of the line is d = ( 4 )
1
0
Angle with k = (0) is 6 where
9 d-k %
cos id| Nt
0 =76.4°
34 a
4
Whent = -2,r = (—1) = 04 so A lies on the line.
—8
2 —
Whent =0,r = ( 1 ) = OB so B lies on the line.
—4
b
C must then be represented by t = 2 so that the distance between AB and BC is the
same.

C has coordinates (0, 3,0)

35 a
—4 7 —4
PQ ( ) so the line has vector equation r = (1) +A (—2)
3 2 3
b

Q is represented by A = land Pby A =0
Then if PR = 3P(Q, R must be represented by A = 3 or 4 = —3
R has coordinates (—5,—5,11) or (19,7,—7)

36 a

2 2 2
Direction vector d = (—3) so the line equation is r = (1) + A (—3)

6 4 6
2
6
c

AP = 35 = 5]|d| so P has position given by 1 = +5
P has coordinates (12, —14,34) or (—8,16,—26)

b

=22+ (-3)2+62=7
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6

37 a

Solving for A:
A_x—l_y—4_z+1
3 =2 3
] . x—=1 y—4 z+1
The Cartesian equation is =T =3
b
3
Reading off the denominators, d = | —2
3
1
|d| = V22 so the unit direction vector is — | —2
vz \
38 a
B-x) @Bz+1)
R S
=3-2Ly=-1,z= 4/1 !
—1 _0 1 —3
3 3
(using 4 = 1.5(1 — 1) to get integer values throughout)
b
2
Wh = e 1
enyu = , T = 1 sop =3
3
39 a
2x—-1) 2-z
= = A’ =17
3 4 Y
Rearranging:

x=151+4+05y=7,z=2—-44

AR GRENG

(using 4 = 2(4 — 1) to get integer values throughout)

b
3
Direction vector of the lineis d = ( 0 )
-8
1
Angle with i = (0) is 6 where
0
g = d-i _ 3
cos Id] 773
6 = 69.4°
EHD%CI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 15
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Reading direction vectors from the denominators of the Cartesian form:

5 3
Direction vectors d; = ( 1 ) and d, = ( 0 )
-1 -1

Angle between the lines is given by 8 where cos 6 =

6 =13.2°

40 c
Line L. h ; x—3 y—2 z—15 o
ine [y has equation —— = ~——=—— 5
. o x+1 z-3 o
Line [, has equation = ,y=1 @
3 -1 k:

X

[

o

=

d1'd2 _ 16
ldqlldz]  v27V10

41

4 2
C has position vector ¢ = ( 2 ) + A (—1) for some value 4
-1 2

2
Require that PC - (—1) =0

2
21—3 2
) ()
21— 4 2
91—14=0
1_14
T 9

Ch dinat (64 4 19)
as coordinates 399

42 a
At t = 0, the position of the object is (3, —1, 4)

1)

6
r(3) = (—4) so the distance from the origin is \/62 + (—4)2 +13%2 =+/221
13

Speed is =v11~332ms™!

C

~ 149 m

43 a
r; = (3—2t)i+ (5t)j
r; = (4t)i+ (5 + t)j

3 -6t
11—Q=(%_5)wh&—&|=¢8—602+@t—@2

= /52t%2 — 76t + 34
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c
Completing the square:

Ity — 1rp| = +/52t2 — 76t + 34
= |52 (t 38) 3¢ + 34
B 52) 52
52( 19) + 81
26/ 13

’81
The minimum separation distance is therefore B~ 2.50
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44

2
Direction vector is d = (—2)
1
|d| = V9 = 3 so the vector position of the aeroplane at time ¢ is r

ek
03

45 a

2
The direction vector of the line d = (—3)

3
. [22-16
PM = (-31—4)

3-8
Require PM-d=0
220 —44=0
A=2
M has coordinates (9, —5, 8)
b
When A =5,r = (15,—14,17) = Fd so Q lies on the line.
c

W = 3d so if R is distinct from Q, MR = —3d, so R is at the position described by
A= -1
R has coordinates (3,4, —1)

46 a
5 _1 5 _
When A = — 19 | so P lieson [4
6 ~6
27
7L 5 _
Whent = —,r, =—( 19 | so P also lieson [,
6 6
27
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b

1 -1
The direction vectors of the lines are d; = (5) ,dy = ( 1 )

3 3
The acute angle 6 between the lines has

(72)
c
9o
=
=
(e)
(7]
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[
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d,-d; |13]
cosf = =
|dqlldz]l V3511
6 = 48.5°
c
-1
Whent =3,r, = ( 5 ) so Q lieson [,
10
d

. 11 11
PQ = —dz 50 PQ =?\/1_z 6.08
(3

If the point on [; closest to Q is R then QRP = 90°,s0 QR = PQ sin6 ~ 4.55

47
Let P, with position vector r, be the point on the line closest to the origin.

2
Then OP - (2) =0
1

(6)-6) -

A=

1
OP = (-2) SOOP = /22 + (=2)2+12 =3
2

48
-1
Let P be the point with position vector { 1 | and Q the point on the line with position

2
vector I, which lies closest to P.

e (-
(-0

-7+11t =0

7
11

1

1 V66

PQ =—| -4 soPQ_—J12+( —4)2+72 = —— ~ 0.739
1\ 11
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Exercise 8E
9

1
Line AB has equationry = (0) + A(

Jool

NGNS NG
N

8
Line CD has equationr, = (3) +u
3

)

o O

Solving r; = ry:
{1+5/1=8—2u (1)

50=3 2)
3
2): A==
Point of intersection is (4, 3, 3)

10

-1 -1
Direction vectors d; = (—2) ,dy = (—3)
—4 3

Since d; # kd,, the two lines are not parallel.
Solving for a point of intersection:
—-3-1A=8—u (1)
5—-2A=5-3u (2)
2—-42=1+3u (3)

(2):21 = 3u
Substituting into (3):2 —6u=1+3u=>9u=1
1 1
Th =—,1==
“r9 6 19 71
Substituting into (1): —3 — 1 = = 8-u==

Since these values are inconsistent with equation (1), the two lines do not intersect;
since they are not parallel, they are skew.

When you have completed Section F on the vector product, you will find a more direct way to
solve this type of problem.

If the two lines are given by ry = a7 + Adq and r, = a, + udjy:

Find vector v which is perpendicular to both d4 and d5.

((31 — ay) 'V) . . .
Then the value of scalar product T is the shortest distance between the two lines.
—18
In this question, you can determine that v = 7 | is perpendicular to both.
1

O

. . .. 199
|[v] = v374 so the minimum distance between the two lines is :
V374

Since this is non-zero, the two lines do not intersect and so are skew.
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11 a 2
o
x=2z-73 5
Forll'{y=22_9 o
11 -3z o]
x=—c o
For [,: 7 — 27 g
Y="%
b

If the two lines intersect then equating the equations for x in the two lines:

11 -3z
2z—3 = S =>10z—-15=11-3z=>2z=2

Equating the equations for y in the two lines:

z—27
2z—9 = z =210z—45=2z2—-27=>2z=2

Since the two equations give consistent results, the point, which has coordinates
(1, -5, 2), must lie on both lines.

12

-1 2
Direction vectors d; = ( 1 ),dz = (2)
2 3

Since d; # kd,, the two lines are not parallel.
Solving for a point of intersection:

1-A=74+2u (1)

A=24+2u (2)

54+21=74+3u (3)
M+2)1=94+4u=>pu=-2
2)=21=-2
Substituting into (3):5—4=7—6
Since this is true, the two lines intersect; the point of intersection is (3, —2,1)

13 a
2

The direction vector of the first line is d; = | 2 | and, reading the denominators of the
1

6
Cartesian form of the second line, d, = (6) = 3d,

3
The two direction vectors are parallel.

Substituting x = —1,y = 1,z = 2, the position of the known point on the first line, into
the second equation, gives
-1-5 1-7 2-5

6 6 3
Each of these fractions has the value —1, so this is a true statement.
The two lines are parallel and pass through the point (—1, 1, 2) so must be the same
line.
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6

b

Substituting x = 4t — 5,y = 4t — 3,z = 1 + 2t into the Cartesian equation in part a:

4t 4t—-10 2t—4
. . . 6 B 6 B 3 . .
These equations are inconsistent so there can be no common point between the lines;
they are parallel and distinct, not coincident.

14 a
The y-axis is the line where x = z = 0.
-6 y+1 1 9
Substituting into the line equation: 5 =TT =3
y = =22
The point of intersection with the y-axis is (0, —22,0)
b

The z-axis is the line where x =y = 0.

e : . -6 1 z+49
Substituting into the line equation: 5 =7 =3

> * - so there is no solution where this equation is true.

Hence the line does not intersect the z-axis

15 a
The first equation can be parameterisedtox =3y + 2,y =4u—1,z=u—-1
Substituting these into the second equation:
3_ 3y = 4p+1 pu-—38
=737 772

18 —-18u=—-8u—2=3u—24
U1 = 2 gives a consistent solution to this set of equations.
There is a point of intersection at (8,7, 1)

b

8

If A = 1 then the vector equation r = (7 ) which shows that the line passes through the

1
point found in part a.

16

(8ol

Setting these equal:
u=1+21 (D
1+2u=7 (2)

p—1=ip—4 (3)

2):u=3
(1):1=2
(3):2=2p—4

p = 3 allows the two lines to have a consistent solution (point of intersection)
The point of intersection is (3,7, 2)
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17 a

1 2
Direction vectors d; = (—1>,d2 = (—1)
2 3

Since d; # kd,, the two lines are not parallel.
Solving for a point of intersection:

1+A=1+4+2u (1)

—A=-1-p (2

3+20=4+3u (3)
M+@)x1=pusor=2
Substituting into (3):7 = 7
This is true, so the two lines have a point of intersection at (3, —2,7)

b

Although they both pass through the same point, the first line does so at t = 2 and the
second at t = 1 so (taking the two helicopters as having point locations — that is,
assuming they are small enough given the scale of the model) they will not collide.

18 a
Re-expressing the two particle positions with different time parameters A and u:

1 2 9 -2
r = —3>+A<1>,r2 = (—1)+u( 1 )
3 7 22 2

2
U= (1) =\/§
7
-2
Uy, = (1) =\/§=3
2

b

Solving for a point of intersection:

1+24=9-2u (1)

—34+A1=-14+u (2)

3+71=22+2u (3)
(D+B):4+91=31=2>1=3,u=1
Substituting into (2): — 3 + 3 = —2 + 2 is true, so the system is consistent and the two
paths intersect, at point (7, 0, 24).
However, the two particles are not at the intersection point at the same time; the first
particle is at the intersection point at t = 3 and the second particle is there at t = 1, so
they do not meet.
19 a

0 1.2 7.7 -1
r1=<0.7>+t<0.8),r2=<0>+t< 1)
3 -0.1 1 0.3

If one fly is directly above the other then the x and y components must match.
{1.2t =77—-t(1)
0.7 4+ 0.8t = t(2)
(1):22t=77=>t=35
(2):0.7=02t=>t = 3.5
The equations are consistent; the two flies are aligned over the x-y plane at t = 3.5.
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b

4.2 4.2
r;(3.5) = < 3.5 ),rz = ( 3.5 )
2.65 2.05

The first fly is 0.6 m above the second.

20 a

64 0 40
rB=t(o),rs=( 05 )+kt<—25>
0 —0.02 c
If they two vessels coincide at a time t then
64t = 40kt (D
0=05-25kt (2)

0=-0.02+ckt (3)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

(1):k = 1.6
(2): 0.5 = 40t = ¢ = 0.0125
e 002
‘T Tkt
b

40
The velocity of the submarine is k <—2 5) =

64
(—40) so the speed is 75.5 km h™!
c

1.6

21 a

- 4 1 1 1 3-A+u
PQ = <1>+u<0) —~ <—1o>+/1<3> =< 11-32 )
5 2 12 —4 —7 + 41+ 2u

Require PQ is perpendicular to both lines, so PQ - d, = P_Q) +dy =0

P—Q)'d]_:O:
3—A+u 1
( 11 -3 >-<3>=64—26/1—7u=0
-7+ 41+ 2u —4
= 261+ 7u =64 (1D
P—Q)'d2=0:
3—A+u 1
( 11-31 >-<0>=—11+7A+5,u=0
-7+ 41+ 2u 2
= 71+5u=11 (2)
b

5(1) —7(2):811 = 243
A=3
Su=-2

. -2
o-(:)
1

PQ = /9 = 3 is the shortest distance between the two lines.
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Exercise 8F

14 a
|a X b| = |a||b|sinf® = 17.5

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

15
|a X b|] = |a||b]| sin 8
7=2X%X5sin6

0 =sin"1(0.7) = 0.775

16
|a x b| = |a||b| sin8

2
(—3) =7X1sin8
-2
V17 = 7sin@
V17
6 = sin?! (—) ~ 0.630
7
17
-1
pxq| = (—10) = |p x q| = V150 = 5v6
7
18

(330

A vector perpendicular to both a and bis —8i — 5j + k

19 a

(G-
)

8-()-C)
)=

1 3 3
1
A unit vector perpendicular to both (1) and (1) is —( 1 )

2 5

0
2
= /2 s0 a unit vector perpendicular to the two vectors would be > (—1)
1
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21 a
(a—b)x(a+b)=axa+axb—bxa—b x b(distributing)
=04+axb+axb—-0WVXv=0vXw=—-wXV)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

=2axb
b
(2a—3b)x (3a+2b)=6axa+4axb—-9bxa—6bxb
=13axb
22 a

a X b gives a vector perpendicular to both a and b.
The scalar product of two perpendicular vectors is always zero.
Taking the scalar product of a X b and a must therefore produce the value zero.
b)
Distributing:
(axb)-(a—b)=(axb)-a—(axb):b
= 0 — O(using the reasoning in part a)

24

3 1 2
(axb)xc= <1>x<1> x(O)
2 3 1
3 1 2
ax(bxc)=(1>x <1>x<0>
2 3 1

The two vector results are not the same.

(2)
()

)0
)

3
1
2

25 a

— 2 —
AB=<—7>=DC
—2
P— _2 —_
BC=<4>=AD
7

The quadrilateral has two pairs of parallel (and equal length) sides, so is a parallelogram
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b
A parallelogram with side vectors u and v has area [u X v]|

2 -2 —41
=7 1X\| 4 =|{ =10 || =V1817 = 42.6
-2 7 —6

26

. 3\ _, -3

AB=|-1],AC=| 2

-1 3 1
A triangle with side vectors u and v has areaE [u X v|

=) 1)

Area = — =
—_— 8 —_—
BC =| =3 | = AD so D has coordinates (11,—2,0)

Area ABCD =

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1
= §v46 ~ 3.39

2

27 a
-2
b
A parallelogram with side vectors u and v has area |u X v|

()
SO N E

|a X b| = |a||b| cos 8

|a-b| =|a||b|siné

where 6 is the angle between vectors a and b

|a x b|? + (a-b)? = (|a||b])?(cos? 8 + sin? )
= |a|?|b|?

Area ABCD = =+vV481 = 21.9

29

ptq+r=0sor=—-p—gq

gxr=gqx(-p-q)
= (q x (—p)) — (q x q)(distributing)
=pXq—-0(uxv=-vxuuxu=0)
=pXxq

rxp=(-p-q) Xxp
= (—p X p) + (—q x p)(distributing)
=pxq—-0uxv=-vxuuxu=0)
=pPXxq
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6

30 a
€(5,4,0),F(5,0,2),G(5,4,2),H(0,4,2)

b
BE=| 0 |andBG =4
2 " 2
AreaBEG=§|ﬁ><B_G)|
1<_8>
=—|| 10
2 —-20
—1 564 ~ 11.9
=3 ~

Exercise 8G

13
Solving
2+40—u=-4 (1)
1+A+4u=8 (2)
1+21+7u=13 (3)
B)-212)—uy—-1=-3=u=2
2):A=7—-4u=-1
Substituting into equation (1):
2+41—u=2—-4-2=-4
The point (—4, 8, 13) lies on the plane.

14 a

. 3\ _, 0
OA=|-1),AB=|4|=2
2 2

3

0
[T has vector equation r = (—1) + A (2 ul 1
2 1 1
b

Solving

3—u=4 (D

—1+4+224+u=4 (2)

2+A+u=0 (3)
MD:pu=-1
BA=—u—-2=-1
Substituting into equation (2):
—-142A+u=-1-2-1+4
The point (4, 4, 0) does not lie on the plane.
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15 a
The plane is described by r-n =a-n

e

The plane has Cartesian equation 4x —y + 7z = 39

b
b-n = 2 # 39 so B does not lie in the plane.

5
16 a n=<1>
—4
b

5
Plane II has scalar product form r - ( 1 ) = 20

2 5
Require (c) . ( 1 ) =20
1 —4

6+c=20
c=14

17 a
1
From the coefficients of the Cartesian equation, the normal vectorisn ={ 5
-8
In| =+v90 = 3v10
| i !
A unit normal vectoris ——| 5
30
-8
b

1
IT has scalar product form r - ( 5 ) =37
-8

p 1
Require (3)-(5>=37=>p+7=37:p=30

1 -8
48 1
Require | g || 5 |=37=59q+32=37=>q=1
2 -8
c
18
The line connecting (p, 3, 1) and (48, g, 2) has direction vector —2) and passes
1
through (30,3, 1)
X 30 —18
It therefore has vector equation r = (y) =3 |+4] 2
Z 1 -1
Solving for A:
x—=30 y—-3 z-1
So-18 2 0 -1
The Cartesi tion of the lineis ~——0 =¥ =3 _ 271
e Cartesian equation of the line is 18 - 2 - 1
EHDCBCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL

LEARN MORE © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

28

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




6

18 a
Solving forr; =y

(2)+(2)- ()0

7—t=1 (1)
—3=1+s (2)
2+2t=26+3s (3)
(1):t=6

(2):s=—-4

Substitute into (3):
24+12=14=26—-12

Since the three equations are consistent for t = 6,s = —4 the two lines do intersect, at
(1,-3,14)
b
-1 0 -2
0 |xX|1]={ 3
2 3 -1
c

-2 7 -2
()-GIC)

-1 2 -1
—2x+3y—z=-25
2x —3y+z=25

19 a
The firstlinehasx =1+ 34,y =—-1+4+44,z=3 - 31
Substituting these into the second line equation:

13 + 32
> =41-1=20-321

This has consistent solution A = 3, so the two lines intersect at (10,11, —6)
b

3 2
The two lines have direction vectors d; = ( 4 ) and d, = (1)
-3 1

7
d, xd, = (—9) is perpendicular to both lines.

-5
c
7
From part b, the vector n = | —9 | must be normal to the plane containing the two lines.
-5
1
The plane has scalar product equationr-n=| —1 |- n
X 7 1 7
()’)' -9)=(-1/1-9
z -5 3 -5
7x —9y—5z=1
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20
6
The line l isr = a + td4 for A (9,—3,7) and directiond; = | —3

2
A second direction vector in the plane is d, = AP = (1 5)

6
A vector equation of the plane is r = a + td; + sd,

NESESE

21 a
The line [ passes through the origin, so the plane containing [ and P is parallel to
4 2
direction vector d; = OP = (0) as well as the line direction d; = (1)
2 1
0 0 0
2dy —d; = (2) =2 (1) so the vector (1) is parallel to the plane.
0 0 0
b
2 0 -1
()(2)- ()
1 0 2
c

0
The plane has scalar product equationr-n =0 | -n

X -1 0 -1
01(3)- ) e)
z 2 0 2
x—2z=0
22

5
The plane 5x + y — 2z = 15 hasnormaln=<1>

-2
and so can be expressed as r - n = 15.

ox—4 y+1
The line = ]
z—2 1
= 3 has direction vector | 1 | and passes through point (4, —1, 2)
3

4 1
The line can be expressed by vector equation r = (—1) +A (1)

2 3
Substituting the general position of a point on the line into the vector equation:

4 1 5
(—1>+/1<1> '(1)=(20—1—4)+/1(5+1—6)=15+OA
2 3 -2

That is, every point on the line satisfies the equation of the plane, so the line lies fully

within the plane.
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23

4
The line’s direction vector d; = (1) is one of the stated directions of the plane, so the
2
line is parallel to the plane.
-3
The point on the line with position vector ( 5 ) lies in the plane, with A = 0, u = —1
1

Since a point on the line lies in the plane and the line is parallel to the plane, the line
must lie entirely within the plane.

24

. -2 1 . —15 5
75 = (_4> - <2) and 7C = ( 6 ) - _3(_2)
—6 3 -6 2
1 5
letd; = (2) and letd, = (—2)
3 2

Plane ABC can be expressed by r = a + Ad; + ud,

iR

3 11 1 5
If D lies in the plane ABC then (8) = ( 0 ) +A (2) +u (—2) for some A and u
8 6 3 2

11+A+5u=3 (D
20 —-2u =38 (2)
6+31+2u=38 3)
2)+(3):6+51=16=>1=2
2u=1—-4=-2
Substituting into (1):
11+2-10=3
The system of equations is so D must lie in the plane ABC.

There are many possible approaches to this question. A reasonable alternative would be to find
the scalar product equation of the plane and show that D satisfies the equation:

10
d; xd, = ( 13 ) so the equation of the plane ABC can be expressed as
—-12

10 11 10
r-{ 13 |]=(0 |- 13
—12 6 —-12
10x + 13y — 12z = 38
Substituting the coordinates of D: x = 3,y =8,z =8

30+ 104 —-96 =38
D lies in the plane ABC
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Exercise 8H

3
19 a ng, = <—1
1

b
Acute angle 0 between the planes is the same as the angle between the normals.

e

Ing-my| 13

Iny[In;| — VITV51

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

cosfO =

0 =~ 57°

0 a n=(§)
" '“=(‘§)”(_§1)

C

2
The plane has equation r - ( 2 ) =11

-1
Substituting the line equation into the plane equation to find the value of 1 at the
intersection:
-3 2 2
(_3)”(2) -(2)=11
4 -1 -1
-16+91 =11

A = 3 at the intersection point.
N has coordinates (3, 3,1)

d PN =3nsoPN =3|n| =9

1
The normal of the plane is n; = (—2)

3
The plane has equationr-n; = a-ny

0 2)-()6)

x—2y+3z=9

‘7 EHDCBCI? A?I(E)ﬁ Mathematics for the IB Diploma: Analysis and approaches HL 32

LEARN MORE © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



c
Acute angle 8 between the planes is the same as the angle between the normals.

[

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Ing - ny| 5
cosfO = =

Ing||nz| 1414
0 ~ 69.1°
22 a

4 1
Line L has equation r = ( 1 ) + A (1)
-3 2

3
Plane IT has equation r - < 0 ) = 20

-1
Substituting the line equation into the plane equation to find the value of 1 at the
intersection:
4 1 3
<1)+a(1) -<0>=20
-3 2 -1
15+1=20

A =5 at the intersection point.
M has coordinates (9, 6,7)
b
If the angle between L and I1 is 6 then the angle between L and the plane normal is
90° -6

-3

(90° — 6) |d - n]| 1
cos -0) = =
|dlIn|  V6v10
90° — 6 = 82.58°
0 =742°
c

In the triangle AMN, ANM = 90°, AMN = 7.42°,AM = 5|d| = 5V6
MN = 5vV6 cos 7.42° = 12.1

23 a
If the angle between [ and Il is 8 then the angle between L and the plane normal is
90° -6

1 1

Line direction vector d = ( 0 ) and plane normal isn = (—5)

-3 4

(90° — 6) |d-n| 11
cos —-0) = =
|dlln|]  v10v42
90° — 0 = 57.5°
6 = 32.5°
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b (77}
3 1 1 15
Line [ has equation r = ( 1 > + /1( 0 ), plane IT has equation r - (—5) =16 5
-1 -3 4 o
Substituting the line equation into the plane equation to find the value of 1 at the g
intersection: I
3 1 1 o
<1>+A<0> -(—5>=16 =
-1 -3 4
—-6—111=16
A = —2 at the intersection point.
The intersection point has coordinates (1,1, 5)
c

If the intersection point is M and the base of the perpendicular to the plane from 4 is N:
In the triangle AMN, ANM = 90°, AMN = 32.5°,AM = 2|d| = 2+/10
AN = 2v10sin 32.5° = 3.39

24 a
1

The normal to the plane is n = (—3), which must be the direction of the line.

5
4 1
The line has equation r = (1) + A (—3)
2 5

b

1
The plane has equation r - (—3) =—24
5
Substituting the line equation into the plane equation to find the value of A at the

intersection:

(- )

11+ 354 =-24
A = —1 at the intersection point.
The intersection point has coordinates (3, 4, —3)

¢
1

If the intersection point is B then part b shows that AB = -1 (—3) so if the reflection
5

1
of A in the plane I1 is C then AC = —2 (—3)

5
The coordinates of C are (2,7, —8)

25 a
2 3 0 0
—1|x[ 1 |]=|5|=5(1
1 -1 5 1
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6

b

2 3 2
The plane I1; has equationr-| -1 |=| 4 || -1
1 -2 1

2x—y+z=0

c
Substituting the coordinates of A into the plane equation:
Ifx=3,y=4,z=—-2then3x+y—2z=94+4+4+2=15
Therefore (3,4, —2) does lie in the plane 3x + y — z = 15

d
The line of intersection must pass through a point of intersection of the planes A in a
direction perpendicular to both normals.

0
From part a, this direction vector is (1)
1

3 0
The line of intersection of the planes has equation r = ( 4 ) + A (1)
-2 1
e
Substituting the line equation into the equation of I15 to find the value of 1 at the
intersection:

() ()

6+31=12
A = 2 at the intersection point.
The intersection point has coordinates (3,6, 0)
f
Acute angle 8 between the planes is the same as the angle between the normals.

O

cos 0 = [ng - ng] _ 5
Ing|Ing| V69

0 =~ 47.1°

26 a

3x—=5y+z=7 (D)
x+3y—4z=22 (2)
7x —21y+11z=a (3)
Eliminating x:
(1)—-3(12): —14y+ 13z = -59 (4)
{(3) —7(2): —42y+39z=a—-154 (5)
(5) —3(4):0=a+23
a=-23
b
When a = —23, the equations are linked such that (3) — 7(2) = 3((1) - 3(2))
That is, the system is consistent (has at least one solution), the planes are not parallel
but there are infinitely many solutions to the three planes simultaneously.
The three planes intersect along a line.
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The above argument is sufficient, but you could alternatively just find the line of intersection:

3 1 7
The normal vectors of the planes are nq = (—5) ,Ny = ( 3 ) and ng = <_21>

1 —4 11
17
nq X n, = 13
14

17
(13>-n3 =119-273+154=0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

14
17
The direction vector | 13 | is perpendicular to all three normals so is parallel to all three planes.
14

Since the planes are consistent (have at least one intersection point) and have distinct normal
directions, and are all parallel to the same direction vector, they must intersect in a line.

13 17
The line has equationr =| 7 |+ A| 13

3 14
27 a

x—y—2z=2 (1)
2x —=2y+z=0 (2)
3x —3y+4z=a (3)
Eliminating x:
(2) —2(1):5z=—-4 (4)
{(3) —3(1):10z=a—-6 (5)
If a = 1 then the system is inconsistent.
The three planes have distinct normal directions, so the three planes enclose a triangular
prism.

b
If a = 2 then the system is consistent and has infinitely many solutions, so the planes
intersect in a line.

1 2 3
The normal vectors of the planes are ny = (—1) ,Ny = (-2) and ng = <_3)

—2 1 4
-5 1
nq X n, = <—5> =-5 (1)
0 0

1
The direction vector of the line of intersection is d = (1)
0

For a point on the intersection line:
(4)>z=-0.8
D)=>x—-y=04

A point on the line is (0.4, 0, —0.8)

0.4 1
The line has equation r = ( 0 ) +4 (1)

-0.8 0
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28 a
The line of intersection passes through a point of intersection A in a direction d which is
perpendicular to both plane normals.

1 2
s = <—3),n2 - (—2)
1 1
-1
ng Xn, = ( 1 ) =d
4

For a point 4, fix x = 0:
{ 3y+z=7 (1)
—2y+z=10 (2)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

(2)-Q):y=3
y=3,z=16
0 -1
Line has equationr = ( 3 ) +/1< 1 )
16 4
b

5
The normal to plane I15 is nz = (—7)
3
d-n=-5-7+12=0
The line is perpendicular to the normal of I15, so is parallel to the plane itself.

c
Substituting x = 0,y = 3,z = 16 into the equation for Il5:
5x =7y +3z=0-—21448 = 27 # 16 so point A does not line in 13
The planes do not have a common line of intersection, but each plane is parallel to
direction d.
The planes form a triangular prism.

29 a

Substituting x = —3,y = 4,z = c into the two plane equations:
x—4z+7=-3—-4c+7>c=1
4x+5y—z=-12+20—-c=7=>c=1

Hence (—3,4, 1) lies in both planes.

b
1 4 20 4
0 |xX{5 |=|-15)=5(-3
—4 -1 5 1
c
4
The direction of the line of intersection d = —3), and from part a, the line passes
1
through (—3,4,1).
The line has Cartesian equation
x+3 y—-4 L
4 -3 °
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b
1 —_— —_
Area ABC = > |AB x BC| = /12 4+ 6% + (—31)%2 = V998 ~ 31.6
C

1
The normal to the plane is n = ( 6 )
-31
The scalar product form of the plane equationisr-n=a-n

o)) (2)(s)

x+6y—31z=-86

d
Substitute x = =5,y = 2,z = 11 into the plane equation in part c:
x+6y—31z=-5+ 12— 341 # —86 so D is not a point in the plane.
e

-5 1
Line [ has vector equation r = ( 2 ) + A( 6 )

11 -31
Substituting the line equation into the scalar product plane equation to find the value of

A at the intersection:

=5 1 1
(2)+4( s ))(s)--os
11 =31 -31
—334 + 9981 = —86

A= 998 ~ 0.248 at the intersection point

Intersection point has approximate coordinates (—4.75, 3.49, 3.30)

f
1
Volume ABCD = gbase area X height

1
= §\/99 x 0. 248|n|

1
§ 998 X@X 998

248
3

You can alternatively use the ‘triple product’ formula for the volume of a tetrahedron:

1
Vzgl(uxv)-wl
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where u, v and w are any three edge vectors.

We already have

-2 1
AB x BC = (—12) =—2< 6 )
62 -31
-8
AD = (—9)
6

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1 1 -8
Volume = 3 2 6 |-{—-9
-31 6
248
3

See if you can prove the validity of the formula!

31 a
Using the coefficients of the Cartesian form, the normals are

NERE
(3

So the two planes have a common normal direction n = (—3) and are therefore

5
parallel.
b
Substituting x = 2,y = 0,z = k into the equation for I1;:
12 -0+ 15k = 20
| = 8
15
c
2 2
r= ( 0 ) + A<—3>
8/15 5
d

This line intersects I1; at A, represented by 4 = 0.
Substituting the line equation into the scalar product plane equation of I1, to find the
value of 4 at the intersection:

(8 (2)) ()2

8 16 761 =3
3 =

49 . ) .
764 = 3 at the intersection point: A = 578

2
The distance between the planes is A (—3) =2 ~132
6V38
5
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32 a

5
The normal to I1; is ny = (1)
1

1
The normal to I1, is n, = (—3)
-2
nl'n2=5—3—2=0
Since the two normals are perpendicular, it follows that the two planes are

perpendicular.
b
5 1 1
(1))
1 -2 —-16
c
Substituting x = 1,y = —1,z = 5 into eacb plane equation:

5x+y+z=5—1+4+5=9 % 21 so0 P does not lie in I1;
x—3y—2z=1+3-10= —6 # 3 so P does not lie in II,

d
The line direction must be perpendicular to both normals if the line is to be parallel to
both planes.

1
Direction vector d = ( 11 ) from part b
-16
The line passes through (1, —1, —5)
. ) o y+1 z+5
The Cartesian equation of the lineisx — 1 = ETR=T

33

3x—y+5z=2 (1)

2x+4y+z=1 (2)

x+y+kz=c (3)
Eliminating x:
(1)—-33):—4y+(5B-3k)z=2—-3c (4)
{ 2)-23):2y+(1—-2k)z=1-2c (5
4)+205):(7-7k)z=4-"7c (6)

a

If the planes intersect at a unique point, there must be a unique solution to equation (6):

k+1
b

If the planes intersect along a line then the system must be consistent but with no unique

solution:
k=1,c= 4
=1,c= 7

c
If there should be no intersection, the system must be inconsistent:

k=1 ¢4
=1,c 7
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Mixed Practice

1 a W=%b—a
b AN = AM + MN

1 1,

=a+§b+§MD
1 3

=Ea+zb

c AP=a+§b=2AN

This shows that A, P and N are collinear, with P the midpoint of AN.

2 a

= (=(3)= (3 ()
o=(7)
(7)-cn i

b
Require (ax b)-d =0

-3 4
(7 )-(—1):—19+16p
16/ \p
19

P=1—6

3

3sinx 4 cosx
Require 8 : 1 =0
1 -2

12sinxcosx+6 =0
2sinxcosx = —1
sin2x = —1

3n
2x = —+2nm

2
. : 3n
The only solution for0 < x < misx = e

()

1
b b=a+c= ( 2 ) so B has coordinates (1,2, —2)

-2
6
c Area OABC =|axc|=|| =5 ]| = V65
-2
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5 a |v| = V1162 + 522 + 122 = V16304 ~ 128 ms™!

b The z coordinate will equal 1000 at time t = % ~ 83.3s

|
NS

a DA=(o>ﬂc=<5)
1 -5

N _DA-DC -5 V10
" |p4||pc| V5Vs0 10

7 a

1
Directiond; = AB = ( 5 )
-1

1
A vector equation of the line is r = (—3) + /1< 5 )

2 -1
1
7

Angle 6 between the lines is such that
d1 ' dz 1

cosfO = = —
|dy|ldy] V27+/51
6 = 88.5°
c
4 1 7
Require (0) + A (1) = (3)
3 7 k
A=3so0k =24
d

AC = /62 + 62 + 222 = /556 ~ 23.6

8 a
-1 2 -2
1 |X|1]=|7
3 1 -3
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b

5 -1 5 2
Point of intersection occurs where (1) =+ t( 1 ) = (4) +s (1)
2 3 9 1

5—t—5+25 (1)
+t=4+s

&) +3(12)+69-+%+ )=> s=-1

Substltutlng mto (3)
24+3t=8=9+s

The system is consistent for s = —1,t = 2 so there is an intersection point, at (3, 3, 8)
c
2
From parta, n = (—7) is perpendicular to the plane containing the two lines.
3
d

5

The plane is given by r - n = (1) 'n
2

The Cartesian form is 2x — 7y + 3z =9

9 a
3
The plane is givenbyr-n=| -1 |- n
2
3x+y—z=6
b

Substituting x = a,y = 2a,z = a — 1 into the equation in part a:
3at+2a+1—a=6

4a =5

a=125

10 ai  AM =ZAC=_(c-a)
aii W=ﬁ+m=(a—b)+%(c—a)=%(a—2b+c)
bi RA=:BA=:(a—b)
bii Ezgﬁzg(c—a)
2, 2 2 2
RT=§RS=§(RA+AS)=§(a—b+2(c—a))=§(—a—b+2c)
c BT = BR + RT

2 - P ——]
= §BA + RT
2 2
==(@-b)+=-(-a—b+2c)
43} 9
=3 (a—2b+0¢)
S5
"9
Hence T is on the line BM.
11
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V6

)

. . V6
The unit vector is therefore 3 -1
1

12
axb=kc

(5v)-+(4)

k=-5
—-1-3p=-20
19

P=?

13 a

AB=< 0 )=DC
2k — 1

. 4
AD = <2k> =
2

None of these vectors can be the zero vector so, by definition, ABCD is a parallelogram.
b

. -1\ _ 4
k=1:>AB=<O>,AD=<2>
1 2

AB-AD _ -2
[AB|[AD| V2v24

Angle A is such that cos BAD =

BAD = 107° = BCD
ABC = ADC =73.2°
c

If ABCD is a rectangle then AB - AD = 0
4(k—2)+22k—-1)=0
8k—-10=0
I = 5

4
14
Properties of vector product: u X u =0, uXv=—-vxu
(2a—b)x(a+3b)=2axa+6axb—bxa—3bxb

=0+6axb+axb-0
=7aXDb

15 Area of a triangle with side vectors a and b is % |a X b|

-3 -2
Two side vectors are ( 1 ) and ( 0 )
1 4

1|(=3\ [~2\| 1|/* 1
Area==|| 1 |x| 0 J[==|{10 ]| ==Vv120=+v30
2 2 2
1 4 2
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16

1 2q
= (3)e=(2)
3 q
1
Requirepa+b =k (1)
2

p+2g=k (D
-p+1=k (2)
3p+q=2k (3)
Eliminating k:
{(1)—(2): 2p+2q—1=0 (4)
(3)—2(2): 5p+q—2=0 (5

2(5)_(4)8p—3=o=>p=g

(72)
c
9o
=
=
(e)
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5)iq=2-5p=-
(5):q P=3

17 a
|]a|]=|b|=1soa-a=b-b=1anda-b =cosa
la—b|l=+/(@@-b) (a—b)
=+vVa-a+b-b—2a-b
=+V2—-2cosa
|a+b|=\/(a+b)-(a+b)
=+vVa-a+b-b+2a-b
=vV2+2cosa

b
|a+ b| =4|a—b|
|a + b|? = 16]a — b|?
24+ 2cosa=32—-32cosa

34 cosa = 30
-1 (15) 28.1°
a = CoS — | =~ 28.
17
18 a

The direction vectors are not multiples of each other, so the lines are not parallel.

4 1
(—1) . (—2) =4 + 2 — 6 = 0 so the two lines directions are perpendicular.
2 -3
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b
Solving for an intersection:
24+42=-24+u (1)
-1-A=-2u (2)
5+22=3-3u (3)
2D+ @2)3+71=—4=>21= -1

1
(2):u=§(1+)1)=0

Substituting into (3):5+ 21 =3 =3 —3u
The system is consistent so the two lines do intersect and are perpendicular.

)
c
9o
whd
=
(e)
o
o
)
X
[
=

3)0)-C)

bi
Solving for an intersection:
7—t=1 (D)
—3=1+s (2)
2+2t=26+3s (3)
(H)>t=6
(2):s=—-4
Substituting into (3): 2 + 2t = 14 = 26 + 3s
The system is consistent so the two lines do intersect
bii
Substituting t = 6 into the first line equation gives the intersection point (1, —3, 14)
c

2
From part a, the normal to the plane is n = (—3)
1

7
The plane has scalar product equationr - n = (—3) ‘n

2
2x—3y+2z=25

20 a
Rewriting the Cartesian form:
x—15 _y- 3 _z—0

1 —4 5
1.5 1
The vector form of the equationisr=| 3 |+ A( —4
0 5
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b

(e ()
() e

5

7
s coordinates (1,2.5)
as coordinates 4 4

A=

C

1 1
Shortest distance between [ and 0 is 0A = Z\/ 724+ 82 4+ 52 = ZV138 ~ 2.94
21 a

4
[, has direction vector d = <—3). If [, is parallel to [; through (0, —1, 2) then [, has
3
equation
0 4
r= (—1) + 4 (—3)
2 3
b

Require AB-d=0

2 4
B has position vector b = (—1) +u <—3>
2 4
=0 )ru( )
-1 3
2 4 4 1
<0>+u<—3> '(—3>—2+34H—0=>lt——ﬁ
-2 3 3

30 14 3 )

B has coordinates <17 ~T T

e

X

oy
I

30
_’—%( 3 ) so AB =%\/302+32+372 ~ 47.7
—37

. 4
AB = (—1)
1

Angle 8 between the direction AB and the direction vector 1 of the line is such that

; AB -1 3 1
CcoS = |— = = —
|AB|]l]| Visv2z 2
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23 a
Rewriting the Cartesian form of the second line:
x—1 y+2 z-05
4 3 2
1 4
The vector equation of the line isr = (—2) +u (3)
0.5 2

¢ AB =18 =32 o
d CAB = cos™? (%) = 60°,ACB = 90°, AB = 32 %
1 32 S

AC =3V2 x == % ®

2 2 o]

Q

4

[

(o]

=

Solving for an intersection:
4—-31=1+4u (1)
1+32=-2+3u (2)

24+A=05+2u (3)
6

(1)+(2)=>5=7/,t—1:>/,¢:7
1

(2):3/1=—3+3u=>/1=—7

Substituting into (3): 2 + A = g # 0.5+ 2u

The system is inconsistent so the two lines do not intersect

(F0)-(3)

3
From part b, the normal to the plane will be n = ( 10 )
-21

3
If the plane passes through (3, 0, 1) then it has scalar product equation r - n = (0) ‘n

3x+10y — 21z = —12

24 a
Rewriting the Cartesian form:

1 4
X—3 _y+2 _*-3
2 3 =2

1 4 2
The line passes through (E' —2,§) with direction d = ( 3 )

3 2
The vector equation of the line is r = %(—12) + A < 3 )
8 -2
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b
a
If the line intersects the x-axis thenr = <0> for some value a.
0
Solving for A:
1
> +21=a (1)
—-2431=0 (2)
4
——21=0 (3)
3 2
(2)and (3)both have solution A = 3
The line does intersect the x-axis.
11
The point of intersection is (?, 0, 0)
c
The angle between line and x-axis is 8 where
g d-i 2
cosf =——=—
dl V17
6 =61.0°
25 a

3
L passes through (3,1, —4) with direction d = (—1)
-1

3 3
The line has vector equation r = ( 1 ) + A (—1)

—4 -1
x—3 y—-1 z+4

-1 -1

In Cartesian form, this is

b
Substituting x = 3 + 31,y = 1 — A4,z = —4 — 1 into the plane equation:
3B3+3)-(1-A)-(-4-1=1

114 = -11

A=-1

The intersection point is P(0, 2, —3)
c

A is equivalent to 4 = 0 on the line equation and the plane is intersected at P given by
A=-1
Then the image of A is at A = —2, which has coordinates (—3, 3, —2)
d
Substituting x = y = z = 1 into the plane equation:
3x—-y—-z=3-1-1=1
Therefore B(1, 1, 1) lies in the plane.
e BP =vV12 + 124+ 42 =18 = 32
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26 a

(5

3 15
Displacementatt = 5is 5 (—1 = (—5
2 10

b
3
Speedis || =1 || = V14 ~ 3.74 m s !
2
c

3 -2
The given line has equation r = (0) +1 (—1)

1 4
Solving for an intersection:

3—-31=4+3t (1)
—-A=6-t (2)
1+41=-7+2t (3)

17
(1)—3(2)$3=—14+6t=>t=?

19
@:d=t-6=21=-—

Substituting into (3): 1 + 41 = — 3?5 + -7+ 2t

The system is inconsistent so the particle’s path does not cross that line.

27 a
0 3
nz(g+tﬁ4)
0 1
b

()
()

d* =, —ry|?
=(0+2t)?2+ (=5 +6t)% + (7 — 2t)*
= 4t% + 25 — 60t + 36t% + 49 — 28t + 4t*
= 44t% — 88t + 74

c
Completing the square:
d? = 44(t? - 2t) + 74
=44(t—1)2 - 44+ 74
=44(t—1)% + 30
Hence d? > 30 at all times and the two aircraft cannot collide
d The minimum value of d is V30 ~ 5.48 km
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28

x-axis intercept: y = z = 0 so 3x = 30. Point is (10,0, 0)
y-axis intercept: x = z = 0 so —y = 30. Point is (0, —30,0)
z-axis intercept: x = y = 0 so 5z = 30. Point is (0,0, 6)

1
Area of a triangle is 3 [u

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

X v|, where u and v are vectors of the two of the edge vectors.

—-10 -10
Two of the side vectors are [ —30 Jand| 0

6
1 —-10 -10
Areazz —30 | X 0 =
0 6

0
1]/—180
60
—300
29 a

2
uXxu=0uxv=vxuand(u+v)xw
=u X w+ v X w for any vectors u, vand w.
For the unit vectors, i X j =K, jx k=i kXxi=]j

1
= §v12600 =30V35 =177

i—-j+4k) x2i—j+k)
=ixQRi—-j+k)—-jxQRi—j+k)+4kxQRi—-j+k)
=2ixXi—ixj+ixk—-2jxi+jxj—jxk+8kxi

—4kxj+4kxk
=0-Kk—j+2k+0—i+8j+4i+0
=3i+7j+k

b
2 2 2
<2>-a=(2)-(—1)=4—2+3=5$0(2,2,3)liesinr-a=5
3 3 1
2 2 1
<2>-b=<2>-<—1)=2—2+12=1250(2,2,3)liesinr-b=12
3 3 4

c
The line of intersection of planes has direction perpendicular to both plane normals.

3
From part a, the direction of the line is d = (7)
1

2 3
The line has vector equation r = (2) + A (7)

2 3 2 !
xX=2_y=-2_
3 = =z-—3

In Cartesian form, this is
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C
_— — 1
AB-AD =|-1|-
3

2 -1
AC-AD = <0)( 5 ) =-24+0-2= OSOTCisperpendiculartoE

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

From part a, the normal to the plane containing 4, B and C has normal vector n = AD
The plane has vector equationr-n =a-n

-1
r ( 5 ) =-5
2
c AD = \/(—1)% + 52 + 22 =+/30
d Volume = %(base area) X height

= Y138 x 42|\ x |75
= 5 (5 [4B x 4¢|) x |D|

:%(%\/ﬁ)x@
=5

31

Substituting x = 0, the point (0, —20, —25) lies on the line.

If the line is the intersection of the planes then this point must lie in both planes.
Substituting into the second plane equation,

4(0) + (—=20) = (=25) =k

k=5

32 a
2 1

The angle 6 between the direction vectors dq = (—2) andd, = ( 5 > satisfies
1 -3

0 d1 ' dz | —11
cosf =
|dy|d;|
6 =51.7°
b

Solving for the intersection:
54+21=u (D
—3-22=7—-6u (2)
1+A=-5+4u (3)
DH+@2):2=7-5u=>u=1
u—>5

():d=—— > =-2

Substituting into (3):14+A1=—-1=-5+4u
The three equations are consistent so the lines intersect, at X(1,1, —1)

C
9
WhenA=2,r;,=|-7]s0Y(9,-7,3) lieson L,
3
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d n
) . 8 S
XYZ =90°YXZ =51.7°,XY =|| -8 || =12 5
4 ©
1 TS
Area XYZ = E(XY)(XYtan 51.7°) =91.2 =
-
33 a =
0 |a - b| (sin2a cosa + sina cos 2a — 1) sin3a —1
cosf = = =
lal[b]  V/sinZ 2a + cos? 2a + 12v/cos? a + sin? a + 12 2
b
The vectors are perpendicular when cos 8 = 0
sin3a =1
—_— n 300
a= c or
c
Ifa = 7?”,sin 3a = sin (72—”) = —1socosf = —1; 6 = mor 180°; the two vectors are

parallel and run in opposite directions. (ie are antiparallel)

34 a
a=0:
2y+z=3 (1)
—x+y+3z=1 (2)
—2x+y+2z=k (3)
Eliminating x:
(1): 2y+z=3 (1)
{2(2)—(3): y+4z=2—-k (4)
20)—(1):7z=1—-k

3—2z k
(D:y =
5k

; ~ i3
(2):x=y+32—1=3—7

There is a unique solution, for each value of k.
b

The original mark scheme for this question suggests using matrices to solve part b, which would
allow a faster method. In the new curriculum, this method is not available in Analysis, so a
somewhat laborious elimination method is likely the most obvious option. Alternatively, given
below, a slightly less cumbersome option using normal vectors is possible.
ax+2y+z=3 @Y

—x+(@+1y+3z=1 (2)

—2x+y+(@a+2)z=k (3)
Eliminating x:
{(1) +a2): (@+a+2)y+(1+3a)z=3+a (4)

2(2) — (3): Ra+1)y+@—-a)z=2—-k (5)
20)—(1):7z=1—-k
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Eliminating z: e

(1+30)(5) - (4 - a)4): S

(2a+1+6a?+3a+ a3+ a?+2a—4a* — 4a — 8)y 5
=(1+4+3a)2-k)-—B+a)4—a) >

(a®+3a?+3a—7)y=a*+5a—10 - (1+3a)k 3

(a—1D(@*+4a+7)y=a*+5a—-10—-(1+3a)k ~

This has no solution for y when a = 1. ;o

c

When a = 1, the equation in part b reduces to

—4—-4k=0

Therefore when a = 1,k = —1, the equations are consistent but have no unique

solution, but the planes have no common normal; therefore the planes meet in a line.

o34

1

The vectord = (—1) is the direction vector of this line.
1

Setting z = 0 in equation (4) to find a point on the line:

dy=4=y=1
):x+2=3=>x=1

1 1
The line has equation r = (1) + A (—1)

0 1

The vector product approach is shown here:

The planes’ normal vectors are

a -1 -2
n1=<2>,n2:<a+1>,n3:< 1 )
1 3 a+?2

5—a
ng X ny = ( —1—-3a ) which cannot be the zero vector for any value of a
a’*+a+2

2a+3
ny; X ng = (—az —2a— 2) which cannot be the zero vector for any value of a
a+4

a‘+3a—-1
n; X nz = a—4 which cannot be the zero vector for any value of a
2a+1

If the cross product of two vectors is not the zero vector, then the two vectors are not parallel.
Since none of the normal vectors are parallel, none of the planes can be parallel.

If the planes intersect in a line then all three vector products above must be parallel to the
direction vector of the line.

5—a 2a+3
—1-3a |=k|—-a?-2a-2
a’?+a+2 a+4

5—a —1-3a _a2+a+2

2a+3 —-a?-2a-2  a+4
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6

Taking the first pair of expressions:
5—-a)(-2—-2a—a?)=QRa+3)(-1-3a)
a®—3a?—-8a—10=—-6a?—11a -3
a>+3a’2+3a—-7=0
(a—1(@*+4a+7)=0

The only real solution is a = 1.

¢)

4 1 1 1 1
Thenng Xny, =|—-4|=4|—-1|,nyXn3=5|—-1],np, Xnz3 =3|—-1]so|—1]isthe
4 1 1 1 1
direction of the intersection line.
The planes will intersect in a line if there is a solution, or will form a prism if not.
Finding a point on the intersection of the first two planes:
Fixz=0:

{x+2y=3 (D
—x+2y=1 (2)

M+2)d4y=4=>y=1x=1
For intersection of three planes in a line, require that (1, 1, 0) must lie in the third plane.
Substituting: —2x +y+ (a+2)z=—-1=k

1 1
If a = 1 and k = —1 then the three planes intersect on the line r = (1) + A (—1)

0 1
35 a

Other points on the cube are
A(2,0,0),B(2,2,0),€(0,2,0),D(0,0,2),E(2,0,2),6(0,2,2)

1 0 0
OM = (2),0—1\1’ = (1),@ (2)
2 2 1
b
-1 ~1
= (o = (1)
-1 0

-1
MP x MN = (—1)
-1

ci

1
Area of a triangle with side vectors u and v is 5 [u X v|

1|(~1\| 3
Area MNP ==|| -1 || = —=
2 2
-1
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-1 -1
AG-MP = ( )( 0 ) =2-2 =OsoA—G>isperpendiculartoW’)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1 -1
AG - MN = 2( 1 )-(—1) =2-2=0 soﬁispel‘pendiculartomv>
1 0
Therefore AG is perpendicular to the plane MNP
ciii
-1 _ (-1
The scalar product form of plane MNP is thereforer-| 1 |=0M-| 1
—x+y+z=3
d
2 -1
Line AG has equationr = |0 |+ 4| 1
0 1

Substituting this into the scalar product form of MNP above to find the value of 4 at the
point of intersection:

(D))

—2+431=3
/1_5
3
The int ti 't'<155>
e Intersec 1onp01n 1S 3 3 3
36 a
—5-31=34+u (1
1=u (2)
104+41=-94+7u (3)
(2):u—é
+
W:ia=E_ 5

-3
Substituting into (3):

104+41=-2=-9+7u
The system is consistent so the two lines intersect. The point of intersection is

P(4,1,-2)
5
b When u = 2,1, = | 2 ] so Q lies on the line.
5
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C

. —-10-34 . -3
QM=< -1 ).RequireQM-(0>=0
5442 4

30+94+20+164=0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

50 = —251
A=-2
M has coordinates (1,1, 2)
d
R -3 4
PMQ =90° PM = =50M = |1 =26
4 3
1 5v26
Therefore the area of triangle PQM isz X 5XV26 = —
37
2+t 1\|?
Pe?=|[1-¢t|—-(1
1+t 3

=1+t + ()2 + (t—2)?

=3t2—-2t+5

“3(e-1) 4 2

B 3 3
This is minimal when t = 3 with value \/?

4

The minimum distance PQ is =3 att = 3
38

. x—3 y+1 z-5 ) ) 1
The line = = has direction vectord = | 2.5

1 2.5 k K
3
If the line is within the plane with normaln ={ 2 |thenn-d =20
-1

3+45—-k=0
k=8
Alternatively:

3 2
The line has equation r = <—1> + A( 5 >
5 2k

Then setting A = 1, the point (5, 4,5 + 2k) lies on the line. Substituting this into the plane
equation:

3x+2y—2z=2=154+48-5-2k
—2k =—16
k=8
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39 a
The direction of the line of intersection must be perpendicular to both normals.

1 5
ny, = <—3),n2 = (1)
5 1
-8 1
n1Xn2=<24)=8< 3)
16 2

-1
The line has direction vector d = ( 3 )

2
For a point on the line, take x = 0 and substitute into both plane equations:

{—3y +52=12 (1)
y+z=20 (2)
(1) + 3(2):82z = 72

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

z=9=y=11
0 -1
The line has equation r = (1 1) + A( 3 )
9 2
b

Require that I1; has direction vectors d and nq, so must have normal n3 = d X n4

(G600

The line passes through (0, 11, 9) so the plane has scalar product equation r - (1) =

() () |

3x+y=11
8
40 a foru=3,r, = (2) s0 Q(8,2,6) lieson [,
6
b
1
Both lines pass through P(2,—1,0) and both direction vectors d; = (—2) and d, =
) 2
(1) have length 3.
2
Then PQ = 3|d,| =9
So PR = 9.

3
PR =+3d, =+ (—6)
6

R has coordinates (5,—7,6) or (—1,5,—6)

c
The angle bisector will have direction vector which is the sum of the two line direction
vectors.
Since R could be on either side of P, the relevant direction vector for [; could be +d;.
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2 3 2 -1
r= (—1) +u<—1) orr = (—1) +,u<—3>

0 4 0 0
41 a

-3+ 21
(i)

-4+ 21

2
Require PC-d=0whered = ( ) is the direction vector of [.

14
—14+9/1=0$l=?

Ch dinat ( 419)
as coordinates 9 ,9, 9

b
1
1 V29
PC = §<_14> =T
—8
c
. 1(1
PC=—-|-14]=CQ
I\ _g
h dinat (65 10 11)
Q has coordinates 57979

42 a Area BCD =§|a><b|

b h =|c|cos@

c
[(axb)-c|] =]axb||c|cosb
(Since 6 is the acute angle between AE and AC, the value must be positive, buta X b
may yield the upward of downward vector, depending on the orientation of the triangle,
so an absolute value is needed in this formula)

1
The volume of a tetrahedron = 3 X base area X height
=2 (51axbl)lel cos
=3(zla ) c| cos

1
=g|(a><b)-c|

& HooRe
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d

=4 - ()e-mi=(3)
()N
G

N =

1
gl(axb)-clz

)
c
9o
whd
=
(e)
o
o
)
X
[
=

Wl RN~ O -

(9

Area BCD = —|a X b|

Il
N~
%l
©

<
Il
I
=
X
/N
N =
N
3
O
N————"
Il
W] =

=
Il
Il
N
5
—_

E|
O
w‘

f

Area ACD =

lc x bl

)+(7)
)

203

(g}

N

= N = N =N

2
Therefore the distance from B to the face ACD is
B is closer to its opposite face.

2@ 2411

03 3
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6

43 a
Solving for an intersection:
—3+21=5+u (1)
3—-A=u (2)
18—81=2-pu (3)

11
(1)—(2)=>—6+3/1=5=>A=?

(Q:ip=3-1= 2
U= =3

Substituting into (3):
34
18—8l=——+*2—pu

3
The system is inconsistent so the lines do not intersect.
b
1
When A =2,r; =1 |soP(1,1,2) lieson [,
2
c

2 1
Require that PQ be perpendicular to both line directions d; = (—1) andd; = ( 1 )

-1
9 3
dl X dz = <—6) =3 (-2)
3 1

1 3
The line PQ must therefore have equation r = (1) +v (—2)

2 1
Finding the intersection of PQ with [, will give the coordinates of Q:

1+3v=5+u (4)
1-2v=yu (5)
24+v=2—-—u (6)
4)—(5):5v=5=>v=1
Bru= -1
Substituting into (6):
2+v=3=2—yu
There is a consistent solution, so the two do intersect, at Q(4, —1, 3)

d
The plane IT must pass through the midpoint of PQ, point M(2.5, 0, 2.5) and have

3
normal | —2
1

3 2.5 3
The plane has scalar product equation r - <—2 =10 > y —2)

1 2.5 1
3x—2y+z=10
e
l; will have the same direction vector d, but would pass through point P instead of Q

() ()
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44 a
Substituting x = 2,y = 1,z = 6 into the plane equation:
5 -3y—z=10—3—-6=1s0Pdoesliein5x —3y—z=1

b
. 5
- (2)
-4

5
The angle between the direction vector and the plane normal n = (—3) 1 90° — 6
-1

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

where 8 is the angle between the direction vector and the plane.

V7
Thensinf = 3
¢ PQ =+/45 = 35
d
If R lies on the plane such that RQ is perpendicular to the plane

PRQ = 90°,PQ = 3v5,sin(RPQ) = g

QR = PQsin(RPQ) = V35

45 a
Solving the system for an intersection:
x+3y+(a-1z=1 (1)
2x+2y+(a—-2)z=1 (2)
3x+y+(@—3)z=b (3)
Eliminating x:
2(1) — (2): 4y +az=1 (4)
{3(1) —(@3): 8y+2az=3-b (5
It is not possible to eliminate y from this pair of simultaneous equations.
Either (4) and (5) are consistent and (5) = 2(4), in which case there is a line
intersection or (4) and (5) are inconsistent and there is no common intersection at all,
the three planes form a prism.
b If (4) and (5) are consistent then b = 1 so that (5) = 2(4)
c
The line of intersection has direction perpendicular to the plane normals.

1 2 a—4
a—1 a—2 —4

1
Require that d is perpendicular to | —3
5
a—4 1
( a )'(—3)=a—4—3a—20=0
—4 5
—2a =24
a=-12
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46 a r=p+4n
b
Substituting the line equation into the plane equation will give the value of 1
representing the intersection @, and P_Q) = An
(p+1n)-n=k
p-n+An-n==k
(k—p-n) (k—p-n)

A= n'n |[n]?
— (k—p-'n)

ThenPQ—T
c

Since PQ is perpendicular to the plane, it follows that the shortest distance from P to
[Tis PQ
_|k=p-m | _lk—p-n| in| = |k —p-n
In|? In|? In|

d

3 4
—4 8

Then the shortest distance is
Ik—p-nI |22+22| 44 22\/26

Inl  v26 V26 13

47

Let the meeting point be C

Require that the path of S,, which is BC, should be of minimal length.
It follows that AC must be perpendicular to BC.

Since the velocity of S; is Gg) the velocity of S, must be + (

V). ifitis to be
perpendicular and with a magnitude three times as great.

BC has equationr = (;g) + A (_3%0), while AC has equationr =t (;8)

These intersect at C:
{70 — 604 =10t (1)

30 + 304 =20t (2)
2(2) +(1):130 =50t >t = 2.6
70 — 10t 44

60 60

The second ship requires 44 minutes to reach the intersection, and the first ship takes 2
hours and 36 minutes.
If the first ship leaves at 10: 00, they meet at 12: 36 so the second ship leaves port at
11:52.
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48 ai

(a—b)-(a—b)=a-a+Db-b— 2a-b by expanding the product
Also, (a—b) - (a—Db) = |]a— b|?

(a+b)-(a+b)=a-a+b- b+ 2a-b by expanding the product
Also,(a—b)-(a—b) =|a+b|?

Ifl]a-b| = |[a+blsoa-a+b-b—2a-b=a-a+b-b+2a-b
>a'b=0
That is, a and b are perpendicular.

aii
laxb|® =|axb|-|axb|
a x b = |a||b| sin 6 fi, where 6 is the angle between the a and b and 1 is a unit vector.
Therefore |a x b|* = |a||b| sin 6 |a||b| sin 6
(n - n = 1 by the definition of a unit vector)
la x b|* = |a|?|b|?sin2 8 = |a|?|b|2(1 — cos? 0)
Buta-b = |a||b| cos @
So la x b|*> = |a|’*|b|*- (a" b)?

bi
Triangle area is given byi lu
X v| where u and v are vectors of two of the triangle edges.

In ABC, two of the edge vectors are AB=b-aandAC =c—a

Area=%|(b—a) X (c—a)|

1
=Z|b><c—b><a—a><c+a><a|

=§Ib><c+a><b+cxa|

(Using that u X u = 0 and u X v = —v X u for any vectors u and v).
Reordering the products:

1
Area=§|a><b+bxc+c><a|

bii
Length AC is |c — a
The area of a triangle equals one half the base length multiplied by the altitude to the
third vertex.
If the altitude to B is h then

1
Area = 3 |c—alh

1 1
Elbxc+axb+cxal=§|c—a|h

Rearranging:
l[axb+bXxc+cxal )
= as required.
lc-al
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 9A

7 a

transport late?

L!

b P(L') =0.6x0.7+04x09=0.78
__P(BNL') _ 0.6%0.7

¢ P(BIL) =Tt =2 = 0538
8 a
size broken?

0.1

B.’

b P(B)=ix0.1+1%x0.2=£z0.157

. 140
P(SNB —Xx0.1
¢ P(SIB) = P(B)) =1 50273

9 a P(S) = P(S|W) x P(W) + P(S|Y) x P(Y)
=04%02+0.1x08
=0.16

b B0
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_ P(WnS) _ 04x02 _ "
b P(W|S) = PE - o1e 0.5 S
10 Using the notation B; is the event that the i ball is blue, R; that it is red: =
a P(different) = P(B;R,) + P(R,B,) ©
8 10 10 8 @
=—X—=+—=X-—= =
18 17 18 17 X~
_ 80 5
153 =
~ 0.523
8
b P(BIR) =1 -
. _ P(R4By) 135717 _
c P(R,|different) = P(aifforend L 0.5
11 a Since there is replacement, the probability is unaffected by the first draw.
P(G) =0.3
b Since there is replacement, the probabilities of the first and second draw
are independent.
P(G) =0.3
12 a P(I) = P(I|C)P(C) + P(I|B)P(B)
=09x%x0.7+0.8x0.3
= 0.87
_ P(CNnD) _ 0.9x0.7 _
b P(C|I) = PO - o 0.724
13 a P(C) = P(C|A)P(A) + P(C|E)P(E)
—09><20+093x18
- 7738 7T 738
= 0.914
__ P(ENnC)
b P(E|C) =50
18
_ 0.93 x 38
0.914
= 0.482
14 a
Transport Late?
Lo 0.2 % 0.05 = 0.01
%02 %095 = 0.19
Lo 0.4%01=004
A/.
C—M‘
@ 04 0.9 = 0.36
Lo 0.4x0.2=008
S 04 % 0.8 = 0.32
b P(L) = 0.01 + 0.04 + 0.08 = 0.13
‘ HODDER
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P(WnL) _ 001 _ 1

¢ P(WIL) = =05~ = 15 = 13 ~ 0.0769
15 a
Fruit Ripe?
ix(].ﬁ:é
Fx04=2
%x(’lﬂ: %
Px0l1=45
1x05=1
ix05=1
1 3 1 2
b P(R)—E+R+g—1)§
_PGnR) _\5) _ 3
c P(S|R) = PR @ =1
16 P(MlP) — P(MNP) — 0.4%0.8 — 0.32 ~ 0471
P(P) 0.4x0.8+0.6x0.6 0.68

17

P(10 heads|20 fair coins) = P(X = 10|X~B(20,0.5)) ~ 0.176
2
P(10 heads|15 biased) = P(Y = 10|V ~B (15,5) ~ 0214

0.176

P(fair|all heads) = ~ 0.451

18

0.176 + 0.214

Let X be the outcome of the roll.

P(4 sides |X < 6) =

P(4sidesn X < 6)

P(X < 6)
10
75 X 1
10 155 20_5
5 X1 tg5Xgt5 %3
_ 2
7
19
P(ANYS) 1 x 0.3 3
PUIS = =5y~ =1 ? 1 =7
X034+5X%X024+5%x0.2
3 3 3
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20
P(DI4) = PDN+) 0.003 x 0.98 — 0.0286
~ P(+)  0.003x098+0997x0.1

This highlights the problems of false positive results in tests for rare diseases.

It is a peculiarity of testing that such a test may appear to become more ‘accurate’ (in the sense
that the number of false results decreases) if the prevalence of the disease increases — or more
accurately, if the test is more often used on individuals who are infected — even though nothing
changes about the test itself!
21
Let + and - be the results of the test (positive and negative) and D be the event that an
individual in the population has the disease.
P(+|D) = P(—|D") = 0.9
LetP(D) =p
Then P(+) = P(+|D)P(D) + P(+|D")P(D")
=09p+0.1(1 —p)
=0.1+0.8p
P(D|+) = 0.775
P(DN+)
~ P(+)
P(+[D)P(D)
~ P(#)
0.9p

- 0.1+0.8p
Rearranging:
0.775(0.1 + 0.8p) = 0.9p

~ 0.0775 07
P=00-08x0775 =

Approximately 27.7% of the population have the disease.

22

P(3 yellow|4) = P(X = 3|X~B(7,0.3)) = 0.227

P(3 yellow|B) = P(Y = 3|Y~B(10,0.3)) = 0.267
P(A n 3 yellow)

P(A|3 yellow) =

P(3 yellow)
0.5 x 0.227
"~ 0.5%0.227 + 0.5 x 0.267
= 0.460
23 a
P(Same) = P(B,B, U W, W,)
m m—1 n n—1

X + X
m+n m+n—-1 m+n m+n-1
m(m—-—1)+nn—-1)

- m+n)(m+n-1)
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b g
P(Blue| )= P(Blue N same) S
HEISame) = 5 ame) E

1 .7x6+8x7 o

2 15 x 14 S

(1 5><4+15><14) (1X7><6+8><7) k-

2 20 X 19 2 15 x 14 o

= 0.435 =

Exercise 9B

12 a
ZP(sz) —1=07+k
k=03
b
E(X) = Zx P(X = x) = 1.9
c X
E(X2) = Z X2P(X =x) = 63
Var(X) = E(x2) — (E(X))” = 2.69
13
ZP(X=x) —1=06+k
k=04
b

E(X) = Zx P(X = x) = 2.8

X

E(X?) = Z X2P(X = x) = 9.2

Var(X) = E(X?) — (E(X))” = 1.36

SD(X) = /Var(X) = 1.17

14 a
E(X) =pr(x —x) =

X

E(X2) = Z x2P(X = x) =226

Var(X) = E(X?) — (E(X))” = 4.96
b

E(3X +1) = 3E(X) + 1 = 13.6
Var(3X + 1) = 9Var(X) = 44.64
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15 a 2
S pw =wy=1=k(145+7+5)= Dy =
—WI=2= 27278/ 8 E

w o

8 I

_ ©
k=15 °

b o

=

E(W)—ZWP(W W) = 4k = 22 -

E(W?) = sz P(W = w) = 8

Var(W) = E(W?) — (E(W)) Z—;g ~ 3.45

c
Var(2QW — 2) = 4Var(W) = 13.8

16 a
E(X)_Z P(X = )_1+6+15+28_25
LT T 16 ~ 8
85
E(X?) = sz PO =) =

X

X

85 625 55
_ 2y _ 2_920 Do 900
Var(X) = E(x?) — (E(X)) S e " el
b
E(10X + 3) = 10E(X) + 3 = 34.25
Var(10X + 3) = 100Var(X) ~ 85.9
17 a

E(X)=ZxP(X=x) -

X

E(X?) = Z X2P(X = x) = 19.9

Var(X) = E(X?) — (E(X))” = 3.09
b

y 7 10 16 25
P(Y = y) 0.2 03 0.4 0.1

C

E(Y) = Zy P(Y = y) = 133

Yy
E(Y2) = Zyz P(Y = y) = 204.7

y
Var(Y) = E(Y2) — (E(Y))” = 27.81 = 9Var(X)
18 a

v 2 4 6 8
P(V = v) 0.1 0.2 0.3 0.4

E(V)ZZUP(VZU)=6

4
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E(V2) = Z v2 P(V = v) = 40 e
,,
Var(V) = E(v2) — (EWV))" = =
b o
W=5—V <
w 3 1 |1 3 =

P(W = w) 0.1 0.2 0.3 0.4 =

C

E(W)=ZWP(W=W)=—1
E(W?) ZZWZ P(IW =w) =5

Var(W) = EW?2) — (EW))” = 4 = Var(V)
19
B =5-0.54
E(B) = 5 — 0.5E(4) = 3.1
Var(B) = 0.25Var(4) = 0.3
20
V=4-04U
E(V) = 4 — 0.4E(U) = —6
Var(V) = 0.16Var(U) = 2.56
21 a

Y 0 1 2 3 4
P(Y = y) 0.1 0.2 0.2 0.3 0.2

b
E(Y) = Zy P(Y = y) = 2.3

y
E(Y?) = Z y2P(Y = y) = 6.9

y
Var(Y) = E(v?) — (E(Y))” = 1.61
C
X =3+ 100Y
E(X) = 3 + 100E(Y) = 233
Var(X) = 10000Var(Y) = 16100

22 a  X~B (3, %)

X 0 1 2 3
P=x | L | 3 | 3 | 1
8 8 8 8

1

2

b E(X) =3 x
C

E(X?) = sz P(X = x) = 3

=15

Var(X) = E(x2) — (E(X))” = 0.75

V3
Then SD(X) = /Var(X) = -
(> HODDER
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23
X 1 2 3
Px=» | 2 | 3 | 1
6 6 6
1

E(X)=ZxP(X=x)=—

X

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

E(X?) = sz P(X = x) = %

X

Var(X) = E(x?) — (E(X))” = % ~ 0.472

IfY =X, + X,
11
E(Y) = 2E(X) = —

17
Var(Y) = ZVar(X) =15

SD(Y) = 4/Var(Y) = 0.972

24 a
E(W)=2=ZwP(W=w)=O.4+O.6+3a+4b
w
3a+4b =1 )
b

ZP(WzW)=1=0.7+a+b

a+b=023 2)
C
(1)—3(2):b=01>a=02
E(W2) = sz P(W =w) =5
Var(W) = EW?2) — (EW))” = 1
25
E(X) =15 =ZxP(X=x) =p+2q+06

X

p+2q=09 (D
ZP(X=x)=1=0.3+p+q
X

p+q=0.7 (2)

(1)=(2):g=02=p=05
E(X?) = sz P(X = x) = 3.1

Var(X) = E(x?) — (E(X))” = 0.85
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26 a

x-5(30.))
"6

1
E(X)Z?)OXEZS

v ()()—30><1><5—25
A = 6 6

b

T=10X —c

E(T) =10E(X) —c=50—-c

1250
Var(T) = 100Var(X) = —3
c

The game is fair if the expectation is zero; ¢ = 50 cents

27
1 26 +
E©S)= ) sPS=5)=(1+2+5+8+10+0) ==~
S
1 194 + c2
E(SZ)=ZSZP(S=S)=g(1+4+25+64+100+c2)=Tc
S
1 185
Var(S) = E(s2) — (E(S))” = 32 (6194 +¢) — (26 +0)?) = =

6(194 + c?) — (26 + ¢)? = 740
488 — 52c + 5¢% = 740
5¢2 —52c—252=0

52 + /522 + 5040

c = 10 =14 or— 3.6

Since ¢ > 10, the value is 14.

28
E(X)=ZxP(X=x)=q+1

X

E(X?) = sz P(X =x) = q +26

X
Var(X) = E(x?) — (EX))* = 2.6 + ¢ — (¢ + 1)? = 0.85
g +q—-0.75=0
(q+1.5)(q—05)=0
q = —1.5 (reject) or g = 0.5

ThenE(X)=14+g=1.5
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Exercise 9C

Except in non-calculator questions, it is expected that students will calculate probabilities from
the integrals of probability generating functions using technology rather than integral calculus.
However, to assist those wishing to practice techniques learned in the Chapter 10, many have
been given full worked algebraic solutions.

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

22 a
P(R<X<n) 82tn d
16 8/~ Jxin2 anx dx
] 8
= [m n(secx)]l
16
=0.172
b
T
plx> 311) _(* 2 .
( 16) = Jsnlnz %
16
2 z
= [mln(secx)]B_n
16
= 0.467
23 a

1
3
P(0.5<Y <1) =f —y(2—y) dy
054

~Br-1]

2”7 4y os
(3 1) (3 1)
4 4 16 32

11

32

b

p(y>2)—f23 2—-y)d
)= e @

=Ey2_%y3]z
“6-n-(-2)

20
27

24

oo 8
j f(x) dx =1 =J ke™ dx
- 3
k[-e™*]8 =1
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b e
—x ko)
P(X>5)—Jke dx 5
o
= ke :
e > —ge8 o
- = X
o3 _ o8 =
~ 0.129 =

c

E(X) = jmxf(x) dx

j kxe™ dx
=3.97 (GDC)

This function can be integrated directly using the method of integration by parts, described in
Chapter 10. However, unless the question explicitly requires an analytical method, remember
that evaluation of an integral using your calculator is acceptable, and even preferred.

25
j f(x)dx—l-]kx dx

B ], =1

k=3
b [e]
E(X) =f_ x f(x) dx
= j3kx3 dx
[36 ]
- Z

26
m
Median m is such that J f(x) dx =

m
1
j (2 —2x) dx=[2x—x2]6”=2m—m2=§
0

2m? —4m+1=0

4++8 - V2

m = = —_—

R

2

m<lsom= —7~0.293
(> HODDER
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27 a
2
P(T>1)—j = dt

[4]

T2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
m 1
Median m is such that f f(x) dx = 5

m1 1 m
—tdt = [—tz]
fo 2 4 |

_m? 1
42
m = /2 (selecting positive root since 0 < m < 2)

28 a
E(Y) = j_ y f(y) dy

2 y
=f0 %smﬁ dy
— 3.87 (GDC)
b

E(Y?) = f y? f(y) dy
R
:fo Esin\/} dy
= 20.0 (GDC)
Var(Y) = E(Y2) — (E(Y))” = 5.043

SD(Y) = +/Var(Y) = 2.25

C

m
1
Median m is such that f f(y) dy = >

fm 1 d 1
Lz =3
From GDC, m = 3.63

Again, using methods of substitution and integration by parts seen in Chapter 10, this integral
can be calculated analytically:

Lety = u? so thatdy = 2u du

vm,, u Jym vm q
j —sinu du=[——cosu +] —cosu du
o T T 0 o T

Vm

1
= —?cosx/ﬁ+;sin\/ﬁ ==

However, this final result cannot be solved algebraically and would require a calculator solution
to find m = 3.63.
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d

From GDC, the probability density function has its maximum at x = 2.47
29 a

E(X) = 0 since the probability density function is symmetrical about 0.

b

E(X?) = fooxz f(x) dx

T
2 x?

= —cosx dx
T 2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

~ 0.467
Var(X) = E(x?) — (E(X))” = 0.467

Using the integration by parts method from Chapter 10, the variance can be calculated exactly:

T

2 X x2 2 2
j —cosx dx = |—sinx - f x sinx dx
T2 2 b3 _n
I -z 2
x? 7
= 7sinx+xcosx] fﬂcosx dx
2
Vs
[ 2 2
= 751nx + xcosx —sinx
7.[2
=7 2
30 a
1
P(X > 0.5) = 2e7* d
(>05) = | o—gxte
= 0.821 (GDC)
b
Maximum on the PDF within the given domainisatx = 1
c
E(X) =f x f(x) dx
= fl © x3e™* dx
~J, 2e-5
= 0.709 (GDC)
31 a
1
f f(y) dy—l—f dy = Eln3
k=1In3
b

m
1
Median m is such that f f(y) dy = >

fm 1 dy = 1l 1
;1 yIn3 Y372

0 Friaay
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32 a
1
f'(x) = 4 — 12x2f'(x) = 0 at a local maximum of the pdf; this occurs at x = iﬁ
1
f"(x) = -24x < 0Oatx = ﬁ so this is a maximum of the pdf and so is the mode.
b
E(X) =f x f(x) dx
1
=f 4x? — 4x* dx
0
4 4 1
_|X,3_Z_5
3% sx]o
4 4
3 5
_ 8
~ 15
33 a
E(T) = f EE() de
= ;
= t(30 — t)(t — 10)? dt
fm 40000 ( ) )
= 22 (GDC)
b
30
P(T > 25) = J f(t) dt = 0.262
25
Let X be the number of students taking more than 25 minutes. Assuming
independence between students, E(X) = 30 X 0.262 ~ 7.85 = 8 students
34 ai
10
P(5<X <10) =f f(x) dx
5
ot 110
= ——e_g
I (e*—-1) L
03 — @2
et —1
=~ 0.237
aii
10
P(X < 10) =f f(x) dx
0
ot 110
= ——e_g
|
et —e?
et—1
~ (0.881
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b
E(X) = f x f(x) dx
20 xe* x
= — €5
5@ =D e 5 dx

~ 4.63 minutes (GDC)

When you have completed Chapter 10, use integration by parts to show that the exact value is

5e* — 25
35 a f(x) is zero or positive throughout its domain
® k2x
f_ f(x) dx = F dx
_ [xz *
~ %z
k2],
Since both these conditions are met, f(x) is a valid pdf for k > 0.
b
m 1
Median m is such that J f(x) dx = 3
m2x d = m? 1 )
L k2T T2
k
m = — (Selecting positive root since 0 < m < k)
V2
c
k2x k? — c?
P(X >c¢) = ﬁdx— = 0.19
2 = 0.81k2
c =09k
36 a
Require that J f(t) de =1
fkﬂ 1 dt = [In|1 + t[]f*t =1 k+2—1
. 1+t Hn Meral T
k+2
i1 ¢
k= 2 0.418
1—e
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b
E(T) = footf(t) dt

e t+1

E(T?) =J t2 f(t) dt
_I?c-)l-l t2 d
B Jk cr1

k+1 1
ZJ t—14+——dt
k t

+1
.2 k+1
=|=-t 1
oo,
(k + 1)? k?
—k+1)-|=—-k 1
> (k+1) > +
=—-k+ !
B 2
— 273 00820
21—e¢)
37 a
3.2 1 3 a3
= | dr=|=x3| =1
P(X > a) L g dx=|5-x ) 57
a3
Require — = 0.95
equire —
a=295
b
Lower quartile L and upper quartile U are such that
L3 U3
P(X>L)—075—1—2— andP(X>U)—025—1—ﬁ
L=1.89,U =273
Interquartile range U — L = 0.836
38
€1
P(X >a) = f p dx =[In]x|]]¢ =1—1Ina
a
Lower quartile L and upper quartile U are such that
PX>L)=075=1—-InL andP(X >U) =025=1—-1InU
L = 60'25, U= e0.75
Interquartile range U — L =~ 0.833
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39 a o
et o
Require f f(x) dx =1 =
10 ~® 20 10 1 20 é
kx dx+ | k(20 —x) dx = [ kx ] + [Zka - —kxz] o
0 10 2 2 oo I
= 50k + (400k — 200k — (200k — 50k)) 5
= 100k =
_ 1
100
b
20 1 20 1
P(X > 15) = k(20 —x) dx = [Zka - —kxz] =125k = =
15 2 Iis 8
c

20

1 1
P(X>a)=0.1= [Zka - Ekxz] = (200 —20a + Eaz) k
a

a? —40a + 400 = 20
a’?—40a+380=0

a=20++20
Taking the negative root, since a < 20, a = 20 —+/20 = 15.5
d

E(X) = 10 by symmetry
E(X?) =J x? f(x) dx

— 00

10 x3 20 20X2 _x3
—j _dx+j e,

10 180x3 — 3x%
400 1200
10

10000 64000 — 480000 — 80000 + 30000

400 1200
350
-3
) 2 50
Var(X) = E(x®) — (E())" = 3~ 16.7
40 a
fl=z)
[
k—
> T
a b
(> HODDER
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b »
. . a+b g
By symmetry, if f(x) is a pdf, then E(X) = > S
) g
For f(x) to be a pdf, require that f f(x) dx =1 E
o <
1 [5)
- =
k b—a -
E(X?) = j X2 £(x) dx
R
= dx
Ja b—a
_ x
T 3(b—a) .
b3 _ a3
30 -a)
B b? + ab + a?
B 3

Var(X) = E(x?) — (E(X))"
a?+ab+b? ja+ b\?
- 3 - ( 2 )
= % (4a? + 4ab + 4b? — 3a? — 6ab — 3b?)

1
— 2 _ 2
——12(a 2ab + b*)

_(a—b)?
12
41 a
f(z)
- T
0 2
b

The mode is the upper limit of the pdf, since the function is increasing

throughout the domain.
Mode is 2

0 Friaay
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C

E(X) = fooxf(x) dx

23
— _ 4
j —20(4x x*) dx

3 2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

3
=100 (80 — 32)
36
~ 25
42 a

For f(y) to be a pdf, require that j f(y)dy =1

k a 1% 2ak3
ay? dy =[2y3] = =1

j_ky y [By]_k 3

3

2k3

a =

b
E(Y) = 0 by symmetry

E(Y?) = j Y2 () dy

—00

k
=Jay dy

[say ]

=§ak5
— 22
5k

Var(Y) = E(Y%) — (E(V))

3
—k?2 =
5k 5

2

43
For f(x) to be a pdf, require that f f(x) dx =1

3 k 3
f k(9 —x?)dx = [§ (27x — x3)] =36k =1
_ -3
= 1
36
By symmetry, E(X) = 0
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5]

E(X?) = waz f(x) dx

3
=f k(9x? —x*) dx
-3

K 3
= [g (15x3 — xS)]_3
324k

Var(X) = E(x?) — (E(X))"
9

5
3
Then SD(X) = ;/_
6v5 6V5
A O ) U (P [ IR & (L
g <K< -f_r 0= xdx =[5 @27x ~x )]_sT«r?
5
~ 0.984
44 a
P(Y<5)=1-P( >5)
6
1
= 1—J 57 (6y —y*) dy
—1_ 3
[81 (Oy* = )]
_ (4 8) 4 (225 125)
- 3 81 81
EN 0.901
81
b
From the graph, the median will be greater than 3, so use the upper part of the
distribution:

*® 1
Median m is such that f f(y) dy=§
m
61 1
- — 42 —
fm27(6y y?) dy >
1 6
=|—(9 2 _ 3]
| oy )|
_(4 8)+ 9m? m?d
B 3 81 81
_108+m3—9m2
B 81

2m3 —18m? + 216 = 81
2m3 —18m? +135=0
From GDC, this has solution m = 3.50
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C

E(Y) = f f(y) dy

3.,3 662_3
_j y_d +j udy
7
8y —y*
108 108 X

<16— 12 — (2 _Z)>

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

~ 4
7
T2
45 a
f(z)
\ |
0 5 10
b
P(T<5)—f510t_t2 d
), 125
~ l151:2 - t3r
375 o
2
-3
C
m 1
Median m is such that f f(t) dt = >
0
J‘m10t—t2 152 =" 15m2P-md 1
, 125 L 375 |, 375 2

2(15m? —m?®) = 375
2m3 —30m? +375=0
46 a

For f(t) to be a pdf, require that f f(t) dt =1

1 2 mt k 2k at\1> k 2k k(m+4)
f kt dt+f ksm(?) dt=—+[——cos(—)] =§+— E—
0 1

. 2 m 2 21
i 2n
T m+4
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c
From the graph, the median will be greater than 1, so use the upper part of the
distribution:
°° 1
Median m is such that J f(t) dt = 3

m
fzk . (ﬂt) gt = [ 2k (ﬂt)]z _ 2k (1 + (nm)) _ 1
" Sin ) = - Cos ) " = - CoS > = >

_2 (T[ 1)_2 (7‘[—4) 107
m = narccos 4k = ﬂarccos 3 ~ 1.

Mixed Practice
1 a

E(X) = Zx P(X = x) = 3.2

X

E(X2) = Z x2P(X =x) = 11.8

Var(X) = E(X?) — (E(X))” = 1.56

b

E(2—3X) =2 —3E(X) = —-7.6

Var(2 — 3X) = 9Var(X) = 14.04
2 a

ZP(V=v)=1=6p+O.4

v
p=0.1
b

E(V) = Zv P(V =v) = 4.2

v

E(V?) = Z V2 P(V = v) = 22.2

Var(V) = E(V2) — (E())" = 4.56

SD(V) = Var(V) = 2.14

0 Friaay
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c

E(10-V)=10—-E(V) =5.8

SD(10 —V) =SD(V) = 2.14
3 a

oo 6
f f(x) dx =1 = J k(6x —x?) dx
—00 0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

316
X
k[3x2—? =36k =1
0

k= 1
36
b
6
P(X > 2) =J k(6x — x?) dx
2
316
x
=k [33(2 - ?
8
36— (12 - §)
36
20
27
c
By symmetry, E(X) = 3
4 a
f(z)
I 3
—» ¢
0 4
b

f'(x) = %(8x — 3x2)

From the shape of the graph, the mode is at the point in 0 < x < 4 at which
f'(x) =0

8
X =3

0 Friaay
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C

m
1
Median m is such that f f(x) dx = 5

R P ) e L
o 6% x% =) di = [ a0 — o 256 2
So 3m* — 16m3 =-128
3m* — 16m3 + 128 = 0

5 a
E(Y) = f y f(y) dy

T ,,2
_ (M
= 7 siny dy
= 1.87 (GDC)

E(Y?) = J y? f(y) dy

— 00
T 4,3

_ (MY
= T siny dy
= 3.87 (GDC)

Var(Y) = E(¥2) — (E(Y))” = 0379
When you have studied Chapter 10, show that the exact values are

w2 — 16

E(X) = E(Xz) =n?—6,Var(X) =2 -—

b
E(4Y + 1) = 4E(Y) + 1 = 8.47
Var(4Y + 1) = 16Var(Y) = 6.06

6
P(B|A) = P(B N A) P(A|B)P(B) 0.6 X 0.4 _ 0.24
P(A4) P(AIB)P(B) + P(A|B")P(B’ ) 0.6 x04+02x06 0.36
2
~3
7 a
X 1 2 3 4
x=n | 2|5 | &1
6 | 2 26 | 26
b
80 40
E(X) —ZxP(X —W ==
X
c
135
E(X?) = Z 2P(X =x)=—
) =) P =x) = 7
X
135 /40\* 155
_ 2y =—=(.
Var(X) = E(X?) (E(X)) = (13> 5 0.917
d
Var(20 — 5X) = 25Var(X) = 229 = 23
‘ HODDER
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8 a »
1 S
H~B(3,5) 5
h 0] 1] 2] 3 o
113 | 3|1 =
P(H =h S A R
( ) 1 slslsls $
[
(o]
b =

3
E(H)= ) hP(H=h) ==
Shre=h =3
E(H?)= ) h?P(H=h) =3
2

Var(H) = E(H?) — (E(H))* ==

c

W =3H -5

E(W) =$BE(H) —5) = —$%$0.50

The game is not fair; in a fair game, the expected profit is zero.

d
27
Var(3H — 5) = 9Var(H) = = 6.75 dollars?
9
ZP(sz)=1=0.5+p+q
X
p+q=05(1)

E(X)=ZxP(X=x)=1.1+4p+5q=3.3

X
4p + 5q = 2.2(2)
(2) —4(1):q=0.2
p=03,9=0.2

E(X?) = Z X2 P(X = x) = 12.5

Var(X) = E(x?) — (E(X))” = 1.61

10 a
By symmetry, E(Y) = 4
b
E(Y?) = Zyz P(Y = y) = 50a + 34b

y
Var(Y) = E(¥2) — (E(Y))” = 50a + 34b — 16 = 4.2
50a + 34b = 20.2(1)

ZP(Y=y)=1=2a+2b(2)

({) —17(2):16a = 3.2

a=02,b=0.3
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11
For a pdf f(x),] f(x) dx =1

3 1 3
f ax+b dx = [—ax2+bx]
1 2 1

=4a+2b=1(1)
E(X) =.[ x f(x) dx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

3 1 1 3
f ax® + bx dx = [—ax3 + —bxz]
1 3 2 1
26
= ?a + 4b = 2.08(2)

() — 2(1):§a =0.08
a=0.12,b =0.26
12 a
P(R) = P(R|Spain)P(Spain) + P(R|Sweden)P(Sweden)
=0.2%x034+0.6x0.7
= 0.48

b
P(SwedennR) 042 7

P(Sweden|R) = PR =048°-38
13 a

Let W be the event the canteen serves cheese sandwiches, and C be the event

Emma eats in the canteen.

P(C|W) = 04,P(C|W') =0.7

LetP(W)=p

P(C) = P(CIW)P(W) + P(C|W")P(W'") = 0.52

0.52=04p+0.7(1 —p)

0.7 —-0.3p =0.52

0.3p = 0.18
p =0.6
b
PIW'NnC) PCIWH)xPW') 07(1-p) 028 7
P(W'|C) = = = = =— = 0.538
Wie) P(C) P(C) 0.52 052 13
14
P(A N B;) = P(B;) X P(A|B))
By B, B Total
A 0.12 0.24 0.1 0.46
A 0.08 0.06 0.4 0.54
Total 0.2 0.3 0.5 1
P(B,nA4) 012 6
P(B;|A) = = =—= 0261
(B1]4) P(4) 0.46 23
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15 a
310
P(X > 2.5) —J — (x* — 6x3 + 9x2) dx
3
—|— 5 _ 4 3
[81 (2x> — 15x* + 30x )]2.5
—1 1 2(625) 15 (625) 30 (125)
81 32 16 8
. 625
a 648
_ 23 0.0355
T 648
b

E(X) = 1.5 by symmetry
E(X?) =J x? f(x) dx

_30010
= e — 4
J81(x 6x° + 9x*) dx

~ 2.57 (GDC)
Var(X) = E(x2) — (EC0)” ~ 0.321

SD(X) = {/Var(X) =~ 0.567

c
From part a, P(X > 2.5) = 0.0355
80 x 0.0355 =284~ 3
3 players should expect to win more than $2.50.
d
The expected win is E(X) = $1.50 so to be a fair game, the charge should also
be $1.50.
16

1
E(X) =200 x 7 = 50

1 3
Var(X) =200 x = x—=37.5
ar(X) 2%7

SD(X) =4/ Var(X) = 6.12

P(43.88 < X < 56.12) = P(43 < X < 57) (since X can only take integer values)
= 0.712 (GDC)

So the probability that X will take a value more than one standard deviation from the

mean is 0.288

17 a

By symmetry, E(X) = 20

E(X?) =J x? f(x) dx

o ;
— 4 _ 2

fw 4000( x* + 40x3 — 300x2) dx
= 420 (GDC)

Var(X) = E(X2) — (E(X))” =
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b
30

5
P(X >25)=| f(x) dx = — = 0.15625 (GDC)
C

If Y~N(20, 20) then P(Y > 25) = 0.132
d

1 0.137
300

This is closer to the value predicted by the student’s model, suggesting that the
normal distribution is more suitable for predicting.

18 a
oo 6
f f(x)dx =1= kf xe™ dx = 0.983k
—00 0

1
=——= 1.018
0.983
1
Use techniques in Chapter 10 to show that k is exactly given by k = 1_ 706

b
E(X) = fjooox f(x) dx

6
= kf x%e™* dx =191
0

Mean lifetime is 1.91 years = 23 months

C
1

P(X <1) =f f(x) dx =~ 0.269
0
d
P(X < 0.5) =0.0918
P(X < 2) =0.604
di
Let A be the number from five which fail in less than six months.
A~B(5,0.0918)
P(A=0)=(1-0.0918)° = 0.618
dii
Let C be the number from five which fail in less than two years.
C~B(5,0.604)
P(C<5)=1-P(C=5)
=1-0.604°
= 0.919
19
After a blue ball is drawn, there are 6 blue balls remaining out of a total of
6+5+8=19

6
P(B,|B;) = —
(> HODDER
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20
10

j fm)dm=1=k m sin? (@) dm = 25k (GDC)
. . 10

Use techniques from Chapter 10 to show that this is the value of the integral

I = 1
25
b
f(m)
—e m
0 10
c
10
P(M>6)=| f(m)dm = 0.436 (GDC)
6
d
E(M) = J m f(m) dm = 5.65 kg (GDC)
E(M?) = f m? f(m) dm = 34.802 kg?(GDC)
Var(M) = E(M?) — (E(M))” ~ 2.84 kg?
SD(M) = /Var(M) ~ 1.69 kg
e
Let Q~N(5.65,2.84)
P(Q > 6) = 0.417
|True value — estimated value|

Percentage error = X 100%

|true value|

~ 49,
21

Let D be the event that a fly dies within the first three days and M be the event that it

has the mutation.
P(D|M") = 0.1,P(D|M) = 0.9,P(M) = 0.03

M M’ Total
D 0.027 0.097 0.124
D’ 0.003 0.873 0.876
Total 0.03 0.97 1
P(M'|D) = 097 0.782
T 0124
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22
Let L be the event that the bus is late and R the event that it rains.

P(R) = A P(LIR ) = i ,P(LIR) = 7

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

20
R R’ Total
L 0.1575 0.0825 0.24
i 0.2925 0.4675 0.76
Total 0.45 0.55 1
P(R'|L) = 0.0825 _ 0.34375 = 11
024 32
23 ai
0.02 0.6 x 0.02 = 0.012

0.6 x 0.98 =0.588

0.4 x 0.01 = 0.004

0.4 x 0.99 = 0.396

aii
P(F) = 0.012 + 0.004 = 0.016
aiii

PUIF) = P(ANF) 0012 3
~ P(F) 0016 4
bi

If F; is the event that the i™ transistor selected is faulty.
P(X = 2) = P(FyF;F3) + P(FLF;F3) + P(F{F,F3)

35
bii
X 0 1 2 3
pxen | £ | B | Z [ L
35 35 35 35
biii
E(X) Z PX = x) = = (0x4+1x18+2x12+3x1) =2 =2
= = = — X —_— —_— = —
* X =35 35 7
X
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24

a

E(T) = f_zoot f(t) dt
=J l(81:2 —t%) dt

2
S 3 _ 945
180(401: 3t )]0

320-96

180
56

T 45
b
Since the function has a local maximum within the domain as its only turning

point, this must be the mode.

f'(t) = 1—12 (8 — 3t?)

8 2v6
f’(t)=0whent=\£=—

3
c
m 1
Median m is such that f f(t) dt = 5
jm L (8t —¢3) dt = [ (16¢2 t4)] (16 =1
. 12 ~ 48 mt-m9 =3
m*—16m?+24=0
m? = 8 +40
Selecting negative root since m < 2:
m? = 8 — 2vV10
Hence m = /8 — 24/10
25 ai
6
P(T >5) = j f(t) dt = 0.407 (GDC)
5
aii
5.5
P(5<T<55)= f f(t) dt = 0.275 (GDC)
5
b
Let X be the number of batteries, out of three, that last at least 500 hours
X~B(3,0.407)
P(X =3) = 0.4073 = 0.0676
c
Let Y be the number of batteries, out of three, that last at least 550 hours
Y~B(3,0.132)
P(Y = 3) =0.1323 = 0.00230
P(Y = 3|X = 3) = P(Y=3nX=3) B P(Y =3) _0.00230_00340
B e P(X =3) T P(X=3) 0.0676
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26
Let X be the mass of the chicken and A, B, C the event of the chicken being the indicated
breed.

P(X > 1.8|4) = 0.159

P(X > 1.8|B) = 0.00135

P(X > 1.8|C) = 0.579

Then P(X > 1.8) = 0.2(0.159) + 0.45(0.00135) + 0.35(0.579) = 0.235
P(BNnX>18) 0.45(0.00135)

P(B|X > 1.8) = Ss 18~ oz - 000258
27 a
1 1
P(X <1) =J fx) dx=[-e¥}=1—-e%=1-——
0 ° V2
e 4= !
V2 1
a——ln( ) In(v2 ——1n2
) =1n(2)
b
m 1
Median m is such that J f(x) dx=§
0
m

m 1
f ae” ¥ dx =[-e¥]|t=1—e"% =
0 2

m=2
c

3
P(X<3)=J f(x) dx=1—e‘3a=1—g
0

V2 V2 V2
1-=)-(1-5 =
P(X<3|X>1)_P(1<X<3)_ 4 2) \4) 1
O P(X>1) 1 (V2) 2
V2 2
28 a
f(z)
)
T T
0 s 2
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PX <m) =J f(x) dx =
1o &
=[——cosx] o
0 Q
1 5
2 =

c

For the f(x) to be a pdf, require f f(x) dx =1

21 1
So f f(x) dx ==
- 2

n a 2t g m?a
f a(x —m) dx = [— (x% — 27tx)] =—(4n? —4n? — (n? - 21%)) = —
n 2 n 2 2
1
2
1
a = F
d
m 1
Median m is such that J f(x) dx = 3
From part a, the median is 7.
e
E(X) =f x f(x) dx
_n?ox 21 x2 — X
=j —sinx dx+j >— dx
0 4 b4 T
= 3.40 (GDC)
f
E(X?) =f x? f(x) dx
_fxz 27 3 _ 11y
= —sinx dx+f ——— dx
0o 4 - T
= 15.45(GDC)
Var(X) = E(X?) — (E(X))” = 3.87
Use methods from Chapter 10 to show that the exact values are
131 5m? 71m?
- X2) = — — — —
E(X) = 7 ,E(X%) = 3 1,Var(X) = i 1
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g

s 1
P (E <X< n) = (by symmetry; the left half of the distribution has area E)

1
4
3n
P (n <X< —)
1 ? 1
=3 (whole triangle has area and this triangle has half the width and height )

8

Th P( <X<3n) >
enP(5 > ) =

h
P(n<X<2n|%<X<32—”)

P(n<X<2n|%<X<37”)= P( <X<3”)
2 2
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These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Exercise 10A

Note: Throughout these worked solutions, we shall use, for clarity, braces around expressions in
limits. This has not been standard notation in the textbook and is not required from students, but
assists in keeping clear what is and is not within an individual limit.

31

f(x) = e

Proposition:  f(x) = 5"e>* forn = 0

Base case: fO(x) = f(x) = 5%5* = e>* 50 the proposition is true forn = 0

Inductive step: Assume the proposition is true forn = k > 0
So f¥(x) = 5ke5*
Working towards: f¥*1(x) = 5¥+1e5%

fk+1(x) — d fk(x)

d
=% (5%e5%) using the assumption

= 5k x 5e%*
— 5k+1e5x

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

32 ai
3
f =
() =— n %
lim {f(x)} ==
X—0C0 2
aii
3e*
i) = 1+ 2e* .
x1—1>r—noo {f(x)} - 1—+0 =0
aiii
x
) =157 xS
Ip e} =135 =1
HODDER
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b
Letu =3e¥,v =1+ 2e*sou’ = 3e*,v' = 2e*
d (u) u'v—uv'

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

dx \v v?
) 3e*(1 + 2e¥) — 6e%* 3e*
f'(x) = =
(1 + 2e¥)? (1 4 2e¥)?
Since both numerator and denominator are always greater than zero, f'(x) > 0
for all x.
The function f(x) is therefore always increasing.
c
y
= 1.5
1
> T
33
(e +x x<2
i) = { 2 x> 2
f(2) = e?® + 2 = 2¢%¢
ed =2
a=Inv2
34 a
3x
f(x) =a* + >
As x = —oo, a* converges to zero but 32—x diverges, so the sum must diverge.
b
X 3_x <
f(x)={a + 5 x<?2
4t x>2
f(2) =a?+3 =4a
a’?—4a+3=0
(a—1)(@a-3)=0
a=1lora=3
‘ HODDER
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¢ 2
a=1 )
v 5
] ©
»
ol
o
X
[
o
1 =
/
2
a=1
a=3
y
[
1
» T
/ 2
a=3
35
2
f(x _{ax +x x<
(x) 192x+21x><22
ax + x
f()_{ x>2

f(2) = 4a +2 = 2b + 2 = 4a = 2b(1)
f'(2) =4a+1=>b(2)

Substituting (1) into (2):2b+1=0»b
b=-1,a=-0.5

0 Friaay
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36
y = erx
Proposition: y™(x) = (n2"1 4+ 2"x)e?* forn = 0
Basecase:  y@(x) = y = xe?* = (0 x 271 + 2%x)e?* so the proposition is true for
n=20
Inductive step: Assume the proposition is true forn = k > 0
So y®(x) = (k2k~1 + 2kx)e?*
Working towards: y*+V (x) = ((k +1)2F + Zk"'lx)ezx

)
c
9o
whd
=
(e)
o
o
)
X
[
=

YO () = ()

d
=4 ((k2k‘1 + ka)er) using the assumption
= 2(k2%71 + 2kx)e?* + 2ke2*
= ((k +1)2F + 2"+1x)e2x

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

37 a

dx\1—x
f(l—x—(l—x—h))
— 1im 4 A1-x—h{1-x)
h—-0 h

\
(((1 —X —}fll)(l —x))
h—0 h
\

}l—>0 {(1 - x —11)(1 — x)}

T (1-x)?
b
1
f(x) = ——
) =1+
Proposition: f™(x) = )n —forn>0

Base case: f@(x) = f(x) =— so the proposition is true forn = 0

1-x (1—x)0+1

Inductive step: Assume the proposition is true forn = k > 0

) (y) = K
So Y (x) FEmSTE
. . e(k+1) _ (k+1)!
Working towards: f (x) Ao
(> HODDER
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fE+D (%) = fk(x)

d k!
~dx (m) using the assumption

NI N
dx
= —k! (—k — 1)(1 — x)~*~2 using chain rule
(k+ 1)
- (1- x)k+2
So the proposition is true forn = k + 1
Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

induction.
38
f(x) = sinx

The proof will use the fact that
sin (A + E) = sin A cos (z) + cos A sin (E)
2 2 2
=cosA
So sin (A + %) = cos A for all A(x)

Proposition:  f™(x) = sin (x + %)

Base case: f°(x) = f(x) = sinx = sin (x + 077:) so the proposition is true forn = 0
Inductive step: Assume the proposition is true forn = k > 0

So f®(x) = sin (x + kz—n)

Working towards: &+ (x) = sin (x + (k+21)n>

d
fk+1) (x) — a fk(x)

~ & (s +) wsing the asumps
= doc Sin | X 2 using the assumption

B < +kn)
= cos|x 5

) < km n) ing (+)
— hiadiiad *
sin|x + > +2 using

= sin (x + —(k +21)7T>

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

0 Friaay
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3
(\/_) = lim

- (W \/_)(W+\/_)}
h(Vx +h +Vx)

S
-t
{x+hx}
{

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

h—>0

h(Vx Tk + %)

S

Llnx/x—+\/_}

2|

40

Tip: Remember that you should never use the same letter for two meanings in any working.
Since h is used in the question as a function, we need to use a different letter for the
infinitessimal in the limit. Greek letters delta (§) and epsilon (€) are often used in this context in
mathematical analysis.

d 6)+h 6))— h
+ (800 +h(0) = lim {(g(x +8) +h(x + 6)) (g0 + (x))}
. {f(x +68) —f(x) glx+d)— g(X)}
= lim +
5-0 f) 0
| {f(x +6) - f(x)} | {g(x +6) = g(x)}
= lim{——— =t + lim
6-0 ) h—0 o)

=f'(x) +g'(x)
This assumes that f'(x) and g’ (x) are well-defined.

There is some concern about rigour here — it is not necessarily true that the limit of a sum
always equals the sum of limits (for example, the sum of x and —x as x — oo clearly has limit
zero, but the individual limits are not defined). However, it is the case that if both expressions
have a finite limit (as here) then it is legitimate to split the limit of the sum of two expressions
into the sum of limits.

41
f(x) = xsinx
Proposition: f@®™(x) = (=1)™(x sinx — 2n cos x)
Base case:
fO(x) = f(x) = xsinx = (—1)°(x sinx — 2 X 0 cos x)so the proposition is true for
n=20
Inductive step: Assume the proposition is true forn = k > 0
So f@R) (x) = (—=1)*(x sinx — 2k cos x)
Working towards: f %+ (x) = (=1)**1(x sinx — 2(k + 1) cos x)

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 6

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



d
— ((=1)*(x sinx — 2k cos x)) using the assumption

dx \ dx

f(2k+2) (x) _ % (% fk(x))

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= a((—l)k(sinx + x cos x + 2k sin x))

= (=1)*(cosx + cosx — x sinx + 2k cos x)

= (=1)*((2k + 2) cos x — x sinx)

= (-1 1 (xsinx — (2k + 2) cos x)
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

42 f(x) =Inx

Proposition: f™(x) =
Base case:

(-1 (n-1)!
xn

—1)2
fl(x) =f'(x) = % = ¢ 1)1 L 5o the proposition is true forn = 1
Inductive step: Assume the proposition is true forn = k > 0
(=D (k - 1)!
K _
So f®(x) = po:
Working towards: f*+1 (x) =

f(k+1)(x) — d (f""(x))

= a ((—1D)**1(k — 1)! x~*) using the assumption

= (=) (k — 1)! (—kx~*k+D)
— (_1)k+2k! x—(k+1)
(—1)*2k!

= T
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 1, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

( 1)k+2k|
xk+1

43
(Vx+4—-vVx)(Vx+4+Vx)=x+4—x=4
4

SO(VX+4_\/E)=\/x_T+\/§

4
Then llm {‘Vx + 4 \/_} = }I_ILIO {m}

The numerator within the limit is constant and the denominator tends to infinity

as x — oo
Hence the limit of this ratio is zero.
(> HODDER
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Exercise 10B

9
Using L’Hopital’s rule:

o(e*f -1 o(e*
llm{ } = lim {—} =1
x—0 X x-0(1

10
Using L Hopital’s rule:

(%P o (2x ) 2
lim —~ = lim {_x} = lim {_x} =0
x—oo (e x—oo (e x—oo (e

11
Using L’Hopital’s rule:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

" 1—cos(x?)) . (2xsin(x?) o L'Hopital’s rul
limy—————=lim P using L'Hopital’s rule
. [sin(x?) .
= xl_I;%{ %2 } (cancellation)
I 2 cos(x?) o U'Hboital’s rul
= lim yp using L'Hopital’s rule
cos(x?
= im{ ( )} (cancellation)
x—0 2
_ 1
2
12 a
X — CosXx
fim (£ S5X)
x~0 W + cos x

(The limit of the numerator is —1 and the limit of the denominator is 1 so the limit of

the ratio can be determined directly)
b
Using L’Hopital’s rule:

. (x —sin x (1 —cosx
) (Lo cost)
x-0(x + sinx x-0(1 4+ cosx

13 a
Using L’Hopital’s rule:

y {sin x} y {cos x}
= = O
0 U2 J xoo U 2x
b
Using L Hopital’s rule:

i sin(x —2)) i cos(x —2)] 1
Ak x2—4 | A 2X T4

0 Friaay
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14
_ {cosz(Sx)} . {—10 sin(5x) cos(5x)
lim{——¢ = 11rr711

m .
X cos? x —2sinxcosx
5sin(10x)
sin(2x)
50 cos(10x)
2 cos(2x)

x—%

} using L'Hopital’s rule

= lim
N
)

} using double angle formulae

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= lim

x—2
2

=25

} using L'Hopital’s rule

15

i (Inx)? i 2x 1Inx ' Hopital's rul
i g = iy = using L'Hopital's rule

mplifvi
— x} simplifying

[uy

x—l
= lim { } using L'Hopital’s rule
= lim {m} simplifying

16
(Inx)? 2x Inx . .
lim m using L'Hopital's rule
x—>

x-1(x3+x%2—5x+3 3x2+2x—5
2lnx

3x3 + 2x2% —

2x71 e
Ln T Ar_% +4 using L'Hopital’s rule

Sx} simplifying

{9x3 + 4x2 — Sx} simplifying

sinx Ccos X
lim{ } = lim{ T } using L'Hopital’s rule

1
— for all x:

9< {B

sinx
Considering that

|x I
—lim { } < lim {
X—00 X—00

0<11m{ }_
X

X—00

sin x
Hence lim { } =0
X—00 X

Tip: The limit of sin x as x — oo is neither zero nor infinity; for a sinusoidal the limit is simply
not defined, but the function does exist for a finite interval range; in such a situation, this sort of
trapping inequality can be the simplest approach to finding limits at infinity.

0 Friaay
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)
c
9o
whd
=
(e)
o
o
)
X
[
=

18

Using L’Hopital’s rule,

~ (sin3x ~ (3cos3x
11m{ - }=11m{—}=3
x->0( SInx x—0 COS X

e3* —1 3e3x
lim{—}=lim{ }= 3
x—0 X x—0 1

Hence the piecewise function is continuous at 3.

19
Using L Hopital’s rule,
lim {xe*} = lim {-=}= lim { ! } =~ lim {&} =0
xX——00 x——oo L@™%X x——oc0 (—e™X xX——00
20
) 1 1 . (x —sinx
iy (= 2} 0
x-0(SInx X x>0 XSinx
) 1—-cosx ) e s
= { - } using L'Hopital’s rule
x—0 X COS X + Sinx
sinx
= lim{ . } using L'Hopital’s rule
x-0 (2 cosx — x sinx
21
i {1 1 }—l' fe"—l—x}
oo lx eF— 1) x50 (x(e¥ — 1)
i 1 } ing L'Hopital’s rul
= lim gn ,’fex — | using L'Hopital’s rule
. ( e - , A . I
= 261_1)1(1) \m} using L'Hopital’s rule
1
)

. (ef+e7* e?* + 1
i ) (e
x—oo (@X¥ — e™X x—oo [@2X — 1

zeZX
= lim { } using L'Hopital’s rule

2e2x

This limit can be resolved without using L’Hdpital’s rule by an alternative manipulation and
then direct application of limits:

0 Friaay
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¥ te™ (14 e
lim = lim =1

x50 eX —e™X x50 (]l — e 2X

However, since the question specified method this is one of the rare cases where the simpler
method is not appropriate, even though it is valid and rigorous!

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Exercise 10C

10 a
Whenx =1,y =2,3x2+y3=3(1)2+23=3+8=11
So (1, 2) does lie on the curve.

b
Implicit differentiation:
dy

6x + 3y?— ix =0
dy
T —2xy~?
Gradient at (1,2) i 2__1

radientat (1,2) is — 7 = -5

c
Perpendicular gradient is 2
Normal has equationy — 2 = 2(x — 1)
y = 2x

11 a
Whenx =0,lIny=0soy =1
y-intercept is (0, 1)

b

Implicit differentiation:

1dy
ydx - = cosx

dy

Q= ycosx

At (0,1), gradient is 1
Tangent has equationy = x + 1

12 a
e*+Iny=0
Whenx =a,y =e
Substituting: e* = 0.5
a=In05=-In2

b
Implicit differentiation:

-0.5

1
At A(In 0.5, e7%%), gradient is 0.5¢7%° = — —
( ), 8 Ve

0 Friaay
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13
Implicit differentiation:
dy
2x—2—-(By?-1)-—==0
X Gy* =D
dy 2x-2
dx 3y2-1
d _ 4
day 2o,
dx 3,1) 2
Equation of the tangent at (3,1) isy — 1 = 2(x — 3)
y=2x—-5
14
2xy —2y*=x+y
Implicit differentiation:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

d d
2y+(2x—4y)%=1+—y

dx

dy — 1-2y
dx 2x—4y—-1
d —1

i =-1
dx (3 1) 1
Tangent at (3, 1) has equationy —1 = —(x — 3)
y=4—x
15 sin(x + y) = V2 cos(x — y)

a

Wh 13w d 5
enx = >4 an y—z4

sin(x + y) = sin (3_n) = E and V2 cos(x — y) = V2 (cos (g)) =

4 2
13m 5w
Sosin(x + y) = V2 cos(x — y) at ( o 24)

Therefore this point does lie on the curve.
b
Implicit differentiation and chain rule:

d d
(1 + d)’) cos(x +y) = =2 (1 - d—y) sin(x — y)
d_y _cos(x+y)+ V2 sin(x — y)

dx V2 sin(x — y) — cos(x + y)
V2, V6
(Za24) @+ Z
_ (e-v2)’
-~ (V6 +v2)(V6 —V2)
_(V8-v2)’

6—2
_6+2-2V12

4
=2-+3

0 Friaay
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16
x2+3xy+y?=1sowhenx =0, y? = 1.
The two y-intercepts of the curve are (0, £1)

Implicit differentiation:

d
2x+3y+(3x+2y)£=0
dy  2x+3y
dx  3x+2y
dy
dx
dy
dxlco,-1)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

3
= — = so the tangent has equationy =1 — -x
(0‘1) 2 2

3
= — = so the tangent has equationy = —1 — 5%

17 a
y-y—x=0
Whenx =0,y —y=0soy(y?—-1)=0:y =0, +1
y-intercepts are (0, 0), (0,1) and (0,—1)
b
Implicit differentiation:

dy
2 _ —_— =
By —-1) e 1=0
dy 1
dx  3y2
dy
dx (0,1)
dy
dx (0‘0)
dy
dx 0,-1)

18 a

ey —y =x?

Wheny =0,x2=1sox =+1

x-intercepts are (1,0) and (-1, 0)
b

Implicit differentiation:

d
(¥ — 1) = 2x
dx

dy  2x

dx e -1

When y = 0, the tangent will be vertical so the two tangent lines are x = 1 and x = —1
19 a

x?2—5xy+y?=1.
Whenx =1,y2—5y=0soy=0o0r5

0 Friaay
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b g

Implicit differentiation: 9o

dy 5
2x -5y + 2y —-5)—=0 ©

dx ®
dy 5y—2x 3
dx 2y-5 x
d -2 2 2 o
% o) =573 so the tangent equationis y = 3 x—-1) =
dy 23 o 23 e
—= = — so the tangent equation is (y — 5) = — (x — 1), which simplifies to y
dx (1,5) 5 5

_B 2
~ 5T
20
Implicit differentiation:
yady dy 1dy

e’ —siny—xcosy ~ = 5 dx
d
%(ey —xcosy —y~1) =siny
dy siny ysiny

dx  e¥— xcosy—y~1 - yeY —xycosy —1
21
Implicit differentiation:

: - dy
xcosx +sinx = (ycosy+smy)a
dy xcosx+sinx

dx ycosy+siny

22
Implicit differentiation:

d
2x+2y%=0(1)

d X
50 2= —= (2)

dx y
Implicit differentiation again, applied to (1)

dy\? d?y
2+4+2— 2y —= =
* (dx) * Y dx? 0
Substituting (2):
2+ 2 Ly 4
y2 y dx2

2% +y*) | d%y
2 =0
¥ TV
Substituting x? + y? = 9 and dividing through by 2:
9 N d’y 0
y2 ydxz -
d?y 9

E: y3

b B0
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23
Implicit differentiation:

d
2x+4y+(4x+4y)£=0
dy — x+2y
dx  2x+2y

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

d
At stationary point,% =0sox =-2y

Substituting this into the original equation:
(—2y)2+4(-2y)y+2y2+1=0

—2y24+1=0
2
y=% g
V2 2
Stationary points are (\/E, - 7) and <—\/§, g)
24

Implicit differentiation:
d
(-3y% + 6xy)%+ 3y2—3x2=0
dy 3 x2 _ yZ
dx  -y2+2xy
: : dy
Turning points occur when == 0sox? = y?

Substituting x =-y into the original equation:

-2 -2 -2 -2
3y3=8soy = He =3 /9, and the turning point is (? ?i/g,? i/@)
Substituting x = y into the original equation:
—y3 = 850y = —2,and the turning point is (- 2, —2)
25 a
v
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b
Implicit differentiation:

d
Zydy = 3x2

dy 3x?

dx 2y
dy _3(16) _

a (4,8) B 2(8) B
The tangent at (4, 8) has equation y — 8 = 3(x — 4) which simplifies to y = 3x — 4

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

c
Substituting this into the original equation:
(3x — 4)? =x3

x3-9x%+24x—-16=0

Since there is a tangent intersection at (4, 8), it follows that (x — 4)? must be a factor of
this cubic.

x3—9x? +24x — 16 = (x — a)(x — 4)?

Comparison of the constant term shows thata = 1

The tangent meets the curve again when x = 1; from the tangent equation, this is at

(1! _1)

Exercise 10D

5
dA _ dx +2 dy
PR T s
=6—28
=-2
6
dB dx dy
- X a T &
=3-24
=-21
7
d_C — y_l % — y_z d_y
dt dt dt
3 N 3
416
_ 15
16
8
If the side length is x then the area of the square is A = x?
dA _ dx
ac ~ “Xae
dx dA
Whenx = 5and— = 2,— = 20 cm? s~ !
dt dt
‘ HODDER
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9 7
c
If the radius is r then the area is A = mr? i)
dA . dr 5
a o
Whenr = 3and S = 12,94 _ 727 ~ 22.6 mm? per d B
enr = 3an dt_"dt_'ﬂN .6 mm* per day g
o
10 =
1
4 3V\3
If the radius is r then the volume isV = §nr3 sor = (E)
2
dr 1 <3V>"§ dv
dt  4m\4xm dt ,
dv dr 50,75\ 3
When V = 100 and— = 200,— = — (—) ~ 1.92 cm? s
dt dt wm\m
11 Area A = xy and diagonal d = \/x? + y?
a
dA  dx N dy
ac Yde Y ae
=10cms™?!
b
dd 1 (2 dx +2 dy)
dt — 2./x2 + 2 ¥ar T
1
=—(24-16
10 ( )
=0.8cms!
12 a
The ratio of height to radius is 6 : 1 for the cone, so for any partial filling, h = 6r
. 1 2, = mh3
—3™ " T 108
b
dv e mh? dh
de = 36 dt
Wh h—18dh— 180 —5 0.177 -1
I T CT:) -7
13
PR —5 dr
=Tnr Sodt = ﬂrdt
When 32 — 865,97 — 18507 = 202~ 765
en 3 -80S =1 SOT_ZT[(l.S)N .65 cm
‘ HODDER
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14
Let the height of the ball above the sportsman be y and the distance horizontally from
the sportsman be x.

Then the distance from the sportsman is d = /x? + y?
. 1
d = ———(2xx + 2yy)

2,/x% + y?
Whenx =4,y =2,x=3,y=0

) 1
d=——(24)~268ms!
2\/20( )

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

15

If density is d, mass m and volume V:d = mV !
d=V~lm—mV-2y

WhenmV~1 =5,m=-2,V =-1

Thend = =2V 1 +mV2=V"t(mV1-2)=3V"1>0
The density is increasing.

16
Let x be the distance of the foot of the ladder from the wall and y be the height of the
top of the ladder above the base of the wall.
x2 + y? = 9 by Pythagoras theorem
Implicit differentiation:
2xx +2yy =0
X =—x"yy
0.2
Wheny =2,y = —0.1and x = V5: x = NG ~ 0.0894 ms™!

Exercise 10E

4

f'(x) =2x—-1

Stationary point at x = 0.5: (0.5, —0.25)
End values f(0) = 0,f(2) = 2
Maximum value is f(2) = 2

Minimum value is f(0.5) = —0.25

5

From GDC, local maximum is at (1,e™1)
End values f(0.5) = 0.5e7%5 > f(2) = 2e2
Maximum value is f(1) = e™?

Minimum value is f(2) = 2e™2

6

xX=6-—2y

Let z = xy = 6y — 2y2. This is a negative quadratic so has a single local maximum.
dz

—=6-4
dy Y
Stationary point at y = 1.5, for which z = 4.5
(> HODDER
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7 2
y=1-—x =
Letz=x3+y3=x34+(1—x)3=1-3x + 3x? 5
Z is a positive quadratic so has a single local minimum. >
z'==-34+6x=0atx=0.5 3
Minimum value of z is z(0.5) = 0.25 ~

O
3 =
y =5x71

Letz=x+y=x+5x"1

z'=1—5x72

Stationary value when x2 = 5. x > 0sox =+/5

z(\/g) = 2+/5 is a local minimum, since z has no upper bound

9 a
Height of the box is x
Side length of the base square is 10 — 2x
Volume V = x(10 — 2x)? = 4x3 — 40x% + 100x
b
V' =12x% —80x + 100 = 4(3x% — 20x + 25) = 4(3x = 5)(x — 5)
The volume is clearly minimal (zero) if x = 5 so the maximal volume is for x = g

C

Maximum volume = = (10 — _)2 2000

d
Minimal volume is 0 forx = Qorx =5

x = 0 is not a stationary point of the cubic but this is because the equation allows for negative
values of x, which the context would not permit.

10

Let x be the side length of the square base and h be the height.

ThenV = x?2h = 64 so h = 64x2

Surface area A = 2x% + 4xh = 2x? + 256x!

A’ = 4x — 256x2

A =0ifx3=64s0x =4

Stationary value is a minimum of the function: When x = h = 4, A = 96 cm?
(The area has no upper bound, since x has no upper bound)

11 a
If the height of the cone is h and the radius is 7 then h = 10 cos @ and r = 10sin 6
1 100
V= §7T1”Zh = sin? 6 cos 0
. 100w
V= T (2sin @ cos? @ — sin3 @)
When 6 ==, = 0.01s0V = ”(3 1)—5” 0.654 cm? s
en o= S0 =3l273) =2~ " cm® s
‘ HODDER
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b
T T
SinceV(0) =V (E) = 0, a stationary pointfor 0 < 6 < 0 must be maximal.
V = 0 when 2sinf cos?2 6 —sin30 =0
sinf (2 cos? 6 —sin?6) = 0
sinf = 0ortan?6 =2
0 = 0 (minimal volume) or 6 = arctan(\/f) ~ 0.955

T T
Since 6 = g + 0.01¢, this occurs att = 100 (0.955 - E) =43.2s

)
c
9o
whd
=
(e)
o
o
)
X
[
=

12

Let the two base vertices be (x,0) and ( — x, 0)

The height of the rectangle is sin x

The area A = (m — 2x) sinx

A= (m—2x)cosx — 2sinx

From GDC, the maximum in 0 < x < wis at (0.71,1.12)
The maximum area is 1.12

13

Let d be the distance from (1, 2) to the point (x, x3) on the curve.
d :\/(x_1)2+(x3 _2)2

From GDC, the minimum occurs at x = 1.25,d = 0.254

14

Let 2L be the total length of the wire.

Let 2x be the length of the base of the isosceles, so that each leg of the isosceles has
length L — x

The area is then A = x/(L — x)? — x? = xVL? — 2Lx

xL L? —2Lx — xL
A =17 = 2Lx - =
VIZ2 —2Lx VIZ2 —2Lx

A' =0whenL? =3Lx = x=§

That is, the base of the isosceles triangle must be one third of the total perimeter; the
triangle must be equilateral.

Clearly the area is minimal for x = 0 or x = L, either of which reduce the area to zero.
The stationary point must therefore represent a local maximum for area.

0 Friaay
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15

The width of one corridor is 1 and the width of the other corridor is a.

Let x(0) be the length of a line crossing the corner touching the inner wall, where 0 is
the angle away from the wall as shown in the diagram:

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

/[
Restrict 8 to only consider 0 < 8 < 0

x can be split into two parts:

The part in the lower corridor is x; = csc 8

The part in the upper corridor is x,, = a cosec(90° — 8) = asecf

x = cosecl + asecl

The longest ladder that can fit around the corner is the minimum value of x as 6 varies.
a

a=1

From GDC, minimum x is 2v/2 =~ 2.83 m

(This is also obvious from symmetry; minimum x occurs when 8 = %)
b

a=28

From GDC, minimum x = 11.2 m

Analytically, using the derivatives of trigonometric reciprocal functions shown in the table at
the top of the next section:

dx
0 = —cosecB cotf +8secHtanf =0
1
tan® 6 = —
an 3
tanf = !
anf = >
1 2
sinf = —,cosf =—=sox =5+ 4V5=5V5~ 11.2
V5 V5
(> HODDER
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5]

Exercise 10F

24
y' = 4sec? xtanx

s 2
y' (Z) =4(V2) (1) =8

s 2
y (Z) = 2(\/2) =4
Tangent has equationy — 4 = 8 (x - %)
y=8x—-2nm+4

25
y' = 2sec?2x
y' (E) = 2(2)? = 8 so normal has gradient — 1
n6 8
y(5)="3
Normal has equation y — V3 = — 1 (x - E)
8 3
s
y = \/§ = — gx + E
26
, 2
Y V1 —x?
y'(0) = 2 so the gradient of the graph where it crosses the y-axis is 2.
27
, 3 6
T
2
28 a

y =tanx + (tanx)™!

T (tanx) = sec? x so using chain rule:
x

. 5 sec® x
y' =sec®x —

tan? x
= sec?® x — cosec? x
sin? x — cos? x

sin? x cos? x
CcoS 2x

%sin2 2x
= —4 cot 2x cosec 2x
b

y' = 0:cot2x = 0 or cosec 2x = 0 (no real solutions)

25 = 0: W 3n
cot2x = .x—40r4

. . T 3
Stationary points are (Z,Z) and (—,—2)

4
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5]

29

y=3"
y'=3*In3
3*In3 =1n81
In(81)
In(3)
x =log; 4
Coordinates are (log; 4, 4)

X =

=In,81 =4

30
s 3
3 1 6
f sec? 2x dx = [— tan Zx] =
0 2 0

~|

31
[ e -
0 * = lin2 o In2

32

a
6
f dx = m = [6arcsinx]} = 6arcsina
0

V1 —x2

y' = 3msec?(mx)
y = f 3msec?(mx) dx = 3tan(mx) + ¢

1
y<Z>=5=3+c:c=2

y = 3tan(mx) + 2

34
f(x) = tanx — cotx
f'(x) = sec? x + cosec?® x

The derivative is the sum of two squared functions with finite values in the interval 0 <

x < g, so is always positive.
By definition, since f'(x) > 0 in the interval, f(x) is increasing.

35 a

(x—2)(x+1) T x—2 + x+1 for some constants A and B

Multiplying by the denominator on the LHS:
3=A(x+1)+B(x—-2)

Substituting:

x=-1:3=-3B=>B=-1
x=2:3=34=>A=1

3 1 1
(x—2)(x+1) x-2 x+1
HODDER
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5]

b

J‘ 3 d _f 1 1 d

x—2)x+1) Sl ) x+1 x
=Inlx—-2|—Injlx+1|+¢c

x—2

x+1

=In

|+c

36 a

(x—2)(x+2) T x—2 +x +2 for some constants A and B

Multiplying by the denominator on the LHS:
x—6=A(x+2)+B(x—2)
Substituting:
XxX=-2:—8=—-4B=>B =2
x=2:1—4=4A=>A=-1

xX—6 2 1

(x—2)(x+2)=x+2_x—2

f e fl 2 1
(x—2)(x+2) o X+2 x-—2
= [2In|x + 2| — In|x — 2|1}
=2In3-0)—2In2—-1n2)
=2In3—-1In2

n()

dx

cos x
Letu =sinx,v=cosxsou’ =cosx,v = —sinx
Quotient Rule:
d (u) u'v—uv’

dx \v v2
d cos? x + sin? x 1 5
Then—tan(x) = > =———=sec’x
dx cos? x cos?x

38
1 o
cosecx = —— = (sinx)
sin x

By Chain rule:
d cos x 1

—cosecx = —cosx (sinx) ™% = ——— X —
dx sinx sinx

= —cotx cosecx
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39 2

cos X 5
cotx = — =

sin x S
Letu = cosx,v =sinxsou’ = —sinx,v’ = cosx 8
Quotient Rule: S
i(g) _ u'v—uv' g
dx \v v? )

d —sin?x —cos?x -1 " =
Thenacot(x) = e =Sz, - cosectx
40
Inx
f(x) =log,x = g Using the change of base rule
1 d 1
Then f'(x) = ——{1 =
en f'(x) lnadx(nx) xIlna
41
Let y = arccos x so x = cosy
Implicit differentiation:
1=—sinyy’
, 1 1 1

Soy'=— =

siny ,/l—coszy_ V1 —x?

42
Lety = arctanx so x = tany
Implicit differentiation:

1=sec’yy’
So v’ = 1 1 1
0y ~sec2y 1+tan?y 1+ x2
43
Let VV be the volume of water in the container.

1

1+ 4t2
0.25
V(0.25) = dt + V(0
(0.25) jo 1+ 4t? VO
1 .
= [E arctan(Zt)] + 120
0

=231.8+ 120

~ 352 ml
44 a
Using Chain Rule:
d
a(arcsin x%%) = 0.5x7%5 x —

B 1
2Vx — x2
‘ HODDER
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b

[ s e fearsn ),

———dx = |2arcsinVx| =m

o Vx — x2 0

45 a

Using Chain Rule:

d secx tanx

P (In(secx)) = Teecx tan x
b

A

5 2 5
f 2tan3x dx = [—ln(sec 3x)]
0 3 0

2
=§(ln2—ln1)
2

==In2
zIn

46

If you have the result from question 44a above, you can directly integrate this function; the
solution below does not use this knowledge, and so completing the square is the sensible
approach to convert the denominator into a form which can be used with a standard formula for
integration.

6x—x2—9 (x—3)2
45

45
3 Véx — x2 J V9 — (x— )2

IR

1
= arcsin (§> — arcsin(0)
m
6
47 a
1 A B

for some constants 4 and B

(x+1)(x+5)_x+1+x+5
Multiplying by the denominator on the LHS:
1=A(x+5)+B(x+1)

Substituting:

x=—-1:1=4A> A=

NI

x=-51=-4B=>B=—-

1 171 1
(x+1)(x+5)_Z(x+1_x+5)

1
dx In|]x + 1| —In|x +5]) + ¢

f(x+1)(x+5) 4( | | = In] )

1 |x + 1| N

= — C

T4 +5
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b )
C -
X2+6x+18 (x+3)2+9 5
J‘ 1 q 1 . (x + 3) N o
—————— dx = —arctan c
(x+3)2+9 3 3 k:
c) x
d O
S (F +6x+18) = 2x +6 =
f'(x
Then, since J f((x) dx = In|f(x)| + c:

j 2x d _J 2x+ 6 6 d
2+6x+18 7 Jx2+r6x+18 x2+6x+18~
x+3

=ln|x2+6x+18|—2arctan( 3 )+c

48

d _ 1
P (arcsinx) = —

Then by Chain Rule:

d Cx+by 1 1 1

— (arcsm( )) =—X =

dx a a Jl_(x+b)2 va? — (x = b)?

a
It then follows, since the indefinite integral equals the antiderivative plus a constant,

_(x+Db
dx=arcsm( " )+c

f a? — (x + b)?

49 a
4x% — 8x + 29 = 4(x* — 2x) + 29
= 4((x—1)2—1) + 29
=4(x—1)?>+25
= (2x—2)>+25
b

1 1
jaﬂ—8x+19dx_j5%+@x—zydx
1 2x — 2

arctan ( ) +c

T 5x2 5
1 " (Zx - 2) 4
= Jparctan | —— c
50 a
d ( nx) = x4 X
4 (xaresinx) = arcsinx —
b
From part a,
x
arcsinx = P (x arcsinx) — T3
Then
Jarcsns s = xaresinz - [ =
arcsinx dx = x arcsinx — X
1—x2

= xarcsinx +vy1—x%2+¢

b B0

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 27

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



51 2
Using L’Hopital’s Rule: o
: (L) :
arctan x 2

lim{ } = lim{~L1+x/{_ 4 %
x>0 X x—0 1 o]
<

[

(o)

52 =

Using L’Hopital’s Rule:

2% —1 2%In2
lim{ }zlim{ }=1n2
x—0 X x—0 1

Exercise 10G

10

Letu =x—2sodu =dx
Limits:

x=2:u=0
x=3:u=1

3 1
f x(x —2)3dx = f (u+2)u3 du
2 0

1
=ju +2ud du

[Su + = u]
10

11

Letu =x+ 1sodu = dx

Limits:

x=0u=1

x=1lu=2

fle\/x +1dx = fz(u —1)%Vu du
0 1

1
zf u?5 — 205 4+ 405 du

2

2
25 1.5
[7 t3u L

=(;x8\/§—§x4\/§+§x2\/§> (7—§+3)

—240_336+140\/§ 30—-84+70
B 105 105
_ 442 +16
~ 105
(7 HODDER
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12 2
Letu=x+2sodu =dx o
Limits: E
x=0u=2 8
x=7:u=9 °
)
X
[
x = )
X+ 2 S
9
zf uO.S _zu—0.5 du
2 9
2
—|= 1.5_4 0.5]
[3u u ,
2 2
=<§x27—4x3)—<§x2x/§—4x\/§)
_6+8\/§
- 3
13

Letx = u?sodx = 2udu

eu
f—dx-f—xZudu
u
=J2e” du

=2e*+c
=2e"* ¢
14
Letu = x + 4 sodu = dx
Limits:
x=0u=4
x=5u=9
J‘S X4 fgu —4 q
X = u
o Vx+4 s Vu
9
— .[ uO. 4u 0.5 du
4
9
8 0.5]
[3 U,
—(2x27 8><3) <2x8 8x2)
~\3 3
_ 14
3
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15 a

1 A B
u(u+1)_u+u+1
Multiplying by the denominator on the LHS:
1=A(u+1)+Bu
Substituting:
x=01=4A=>A=1
x=—-1:1=-B=B=-1

1 1 1

u(u+1)=a_u+1

for some constants 4 and B

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b
Letu = e*sodu = e* dx

1 1
— - X
fex+1dx fex(ex+1)e dx

_fu(u+1) v

_fl 1 q
T Ju u+1 v
=In|u| —Inlu+ 1| +c¢
=1
n|u+1|+c
=1
nex+1 +c
=—In|l1+e ¥ +c
16
Letu =e*—1sodu =e*dx
Limits:
x=In3:u=2
x=In5:u=4
In5 e2x q In5 eX ‘g
Jl‘n3 e¥—1 x_flnB ex_le g
J4u+1
= du
2 u
4
=J1+u‘1 du
2
= [u + Inful]3
=4+In4)—(2+1In2)
=2+1In2
17

Letu =Inx sodu = x1dx

f(lnx)zx‘1 dx = fuz du
1

3

=-u’+c
3
1 3

=—(nx)’+c¢
3
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18
Letu = tanx so du = sec? x dx

jsec“x dx = jseczxseczx dx
= f(l + tan? x) sec? x dx

=f(1+u2) du

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

+1 3 4
=u-r+-u c
3

1
= tanx+§tan3x+c

19
—X
Let x = In(secu) sou = arccos(e™™) and du = ——— dx
V1—e ¥
===
———dx = | ——— dx
= f 1du
=u+c
= arccos(e™) + ¢
20
Letu = sinx sodu = cosx dx
Limits:
Whenx =0,u=0
Wh m 1
enx = 6,u =5
T T
jE 3cosx dy = jE 3 q
o 10 —cos?x *= 0 9+sin2x o0
1
f? 3 d
o 9+ u? “
3 1
U\12
= [g arctan (E)]O
= arctan )
= arctan c
21
Letu =14+ e*sodu = e* dx
1 1
_[1+ex dx:,[e"+e2"e dx
1
= ——d
f w—1u"
‘ HODDER
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5]

Partial Fractions:

1 A B
—— - = — + —— for some constants 4 and B
u(u—1) u u-
Multiplying through by the denominator on the LHS:
1=A(u—-1)+ Bu

)
c
9o
whd
=
(e)
o
o
)
X
[
=

Substituting:
u=0:1=-4A=4=-1
u=1:1=8B

1 1

u(u—1)=u—1_

fld_fl 1d
1+ e~ x= u—1 uu

=In|lu—1| —Inlu| + ¢
=x—In|1+e*|+c

22

Letx = —smu sodx = —cosu du and u = arcsin

2V2 2v2 ( 5x )
2V2

fm Z‘Ff\/l_T

cosu du

_§J\/11—sin2u

=—J cosu du
5) cosu

=§u+c
1 _ <5x)+
= —arcsin[——= c
5 2V2
23
Letx = sinu sodx = cosu du
Limits:
x=0u=0
_1. —T[
X = .u—2
1 7
jxll—xz dx=J cos?u du
0 0
T
21
=J —(cos2u+1) du
0 2
T
2
[ sin2u + — u]
W
4

Tip: Alternatively, as hinted in the book answers, realise that this integral calculates the area of
the first quadrant of the unit square, whose equation is given by x? + y? = 1, so that y =
V1 — x? in the upper two quadrants. The area is clearly one quarter of the area of the circle, 7.
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Since e* > 0 for all real u, only the positive root is valid.

x+Vx2+4
2

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

et =

b
Letx =e* —e“sodx = (e* +e™) du
Limits:
x=0e*=1sou=0

1++5 1++/5
> sou=ln< > )

U —

x=1:e

N . . 1++5
For simplicity of algebra in the working,leta = In >
| L f ) . (e +e ) d
———dx = e +e u
0 VT 22 Vi zien
J’ e +e
J(%+e “)2
= f 1 du
0
= [ul§
=a
(Lt V5
- 2
Exercise 10H
10
1
Letu=x,v' =e**sou’' =1,v = Eezx
Integration by parts: f uv'dx = uv — Ju’v dx
1 1 1 1 1
f xe?* dx = [_erx] —J —e?* dx
0 2 o Jo 21
1 1
— [Eerx _ Z er]O
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11

Letu =x,v' =cosx sou' =1,v =sinx

Integration by parts: f uv'dx = uv — fu’v dx
s s

s
2 L 2
fxcosx dx=[xsinx]§—f sinx dx
0 0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

T
= [xsinx + cos x]2
)
12
1
Letu =2x,v' =e ¥ sou' =2,v= —§e‘3x

Integration by parts: f uv'dx = uv — fu’v dx

2 2
ije‘3x dx = ——xe 3 + Jge‘” dx

3
2 2
= —gxe‘“ —§e‘3x +c
= —5(3x +1e3* +¢
13
1
Letu=Inx,v' =x%sou =x"1,v= gx(’

Integration by parts: f uv'dx = uv — fu’v dx

e 1 e e].
fxslnx dxz[—xslnx] —f —x° dx
1

[6 6lnx——x]

61 36 36
=—(5e®+1
36( e®+1)
14
1
Letu = In2x,v' = x? sou’=x‘1,v=§x3

Integration by parts: f uv'dx = uv — J u'v dx
2

2 1 21
f x%In2x dx = [—x3 In Zx] —f —x?% dx
1 3 1 N 23

1 1
—|>x®Im2x = 3]
[3x niix 9x )

8 8 (1 1
=—ln4———<—ln2——)

3 9 3 9
5In2 4
= nz2—-—
9
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15

Letu=Inx,v' =x%°

sou =x"1,v=2x05

Integration by parts: f uv'dx = uv — J u'v dx

4 1 1
f x % Inx dx = [2x2 lnx] —f 2x 72 dx
1 1 1

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1 1714
= |2x2 lnx—4x2]
1
=4In4-8—-(0—4)
=8In2—-4

16

Letu =x%,v" =e*sou' =2x,v' = —e™*

u'=2,v=e>*

Integration by parts (twice): J uv' dx = uv' — f u'v' dx
=uwv' —u'v+ f u''v dx
fxze‘x dx = —x?%e™* — 2xe™* + f 2e7* dx
=e *(x*+2x+2)+c

17
Letu = x%,v"” =sinx sou’ = 2x,v' = —cosx,u’”’ =2, v = —sinx

Integration by parts (twice): J uv' dx = uv' — f u'v' dx
=uwv' —u'v+ | u'v dx

V1 Vs
f x?sinx dx = [—x? cosx + 2x sin x|T — J 2sinx dx
0 0

= [—x?% cosx + 2x sinx + 2 cos x]¥
=n2-2-2
=n?—4

18
Letu=Inx,v" =Qx+1)sou =x"L,v=x?+x

Integration by parts: f uv'dx = uv — Ju’v dx

j(2x+1)lnx dx=(x2+x)lnx—Jx+1 dx

— (12 _1 2 _
=((x“+x)Inx Zx x+c

0 Friaay
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19 a
1
f sec?(2x) dx = Etan(Zx) +c
b

1
Letu = x,v' = sec?(2x) sou' = 1,v = Etan(Zx)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Integration by parts: j uv' dx = uv — J u'v dx
1 1
fxsecz(Zx) dx = 7% tan(2x) — fitan(Zx) dx

1 1
= Ex tan(2x) + Zln cos(2x) + ¢

20 a
j x? q _J1+x2 1 q
1+ x2 X = 1+x2 1+4+x2 x

1
—fldx—fl_l_xzdx

= x —arctanx + ¢

b

1 1
Letu = arctanx, v’ = xsou’ =——,V=5X
1+x 2

Integration by parts: j uv' dx = uv — J u'v dx

2

f . q 1, . 1[ x?
xarctanx dx = 5 x*arctanx —> | 7——

= Exz arctan x — 3 (x —arctanx) + ¢

1 1
=—(x?+4+1)arctanx —=x + ¢
2 2
21 a
Using Chain Rule:
d secxtanx
—(In(secx)) = —— =tanx
dx secx
b
Letu = In(secx),v’ =sinx sou’ =tanx,v = —cosx

Integration by parts: j uv' dx = uv — J u'v dx

T T

2 T 2
j sinx In(secx) dx = [— cosxln(secx)]g +j cosxtanx dx
0 0

SySE!

= [~ cosx In(sec x) — cos x]
= —?ln(\/ﬁ) —§+ 1

=1—g(2+ln2)

0 Friaay
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22 a
Letu =cosx,v =e*sou' = —sinx,v = e*

Integration by parts: f uv'dx = uv — fu’v dx

szexcosx dx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= excosx+Jexsinx dx

=e*cosx+ ]+

Letu =sinx,v' = e*sou’ =cosx,v =e*
J = J e*sinx dx
=e*sinx — f e* cosx dx
=e*sinx -1 +c,
b
Substituting the second result into the first (and allowing the sum of two unknown

constants to be written as one):
I =e*(cosx +sinx) —1+c

1
Izzex(cosx+sinx) +c

23
Letu=Ilnx,v ' =1sou' =x"Lv=x

Integration by parts: j uv' dx = uv — J u'v dx

jlnx dx=x1nx—j1 dx
=x(Inx—-1)+c

24
Letu = (Inx)%,v' =1sou =2x"'lnx,v=x

Integration by parts: f uv'dx = uv — fu’v dx
f(lnx)2 dx = x(Inx)? — f 2Inx dx

Using the same working as shown in the previous question,

flnx dx =x(Inx—1)+c¢

f(lnx)2 dx = x((Inx)? = 2Ilnx +2) + x

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 37

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020



25
1

14 x2’
Integration by parts: f uv'dx = uv — fu’v dx

Letu = arctanx,v' = 1sou' = v =

X

f arctanx dx = x arctanx — f — dx
1+ x2

_ " lf 2x
= x arctan x 5| T3 22

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1
= xarctanx — Eln(l +x%)+¢

<using that Jff,((;)) dx = In|f(x)| + c)

Tip: Note that modulus signs are not needed for the logarithm since 1 + x? is positive for all x

26
1
Letu = e3¥,v" =sin2x sou’ = 3e3*,v' = —5cos 2x,u” =9e3* v = —Zsin 2x
Integration by parts (twice): f uv” dx = uv’ — f u'v' dx
=uv' —u'v+ | u'vdx
Let] = je3x sin 2x dx
3 9 .
(— —Ccos2x + — sm Zx) f Ze3x sin 2x dx

_e” 2% — 205 2x) — o1 +

4 sin 2x cos2x) — I +c

= (€7 3sin2x — 2005 2x) | = - €¥*(3 sin 2x — 2 cos 2x) +

3| Bsin2x cos2x) | = e sin 2x cos2x) +c¢
27
Letu =cos3x,v" =e*sou’ = —3sin3x,v' = —e ™%, u"" = —9cos3x,v=e7%
Integration by parts (twice): f uv” dx = uv’ — f u'v' dx
=uv' —u'v+ | u'vdx
Let] = je‘x cos 3x dx
I =e*(—cos3x + 3sin3x) — f 9e™* cos 3x dx
=e *(3sin3x —cos3x) — 91 + ¢

1
I =—e*(3sin3x —cos3x) + ¢

10
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28 a
Takingn # —1:

Letu =x™v' =e¥sou =nx"1

, v =e*
Integration by parts: f uv'dx = uv — fu’v dx

I, = | e*x™ dx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= e*x" —fne"x”‘1 dx
=e*x" —nl,_,
b
By iteration,
13 == exx3 - 3]2
= e¥x3 — 3(e*x? — 21I,)
=e*(x3 — 3x2) + 6(e¥*x — 1))
Io=jex dx=e*+c¢
Sol; =e*(x3—3x2+6x—6) +k
1
f x3e* dx = [e*(x3 — 3x%2 + 6x — 6)]}
0

=e(1-3+6—-6)+6
=6—2e

Exercise 10l
13

)

0.2
b
1
(™% dy =4n
0.2
(> HODDER
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14 @
f(x D2 dx =n| x‘l]a=n<1—1)=z7t S
1 ! a/ 3 %
a=3 n
°
o
15 %‘,
y=x%2s0x = ﬁ =
a? a?
th x? dy—nj ydy—n[y] —na =8m
0 0 2
12
16 a x-coordinate of A is —3
b
3
V= nf y? dx
-3
3
= nf x+ 3 dx
-3
= 18w
17 a
2
A =f x dy
-2
2
= f 4—y* dy
-2
32
3
b
2
V= T[f x? dy
-2
2
=T[f 16 — 8y? + y* dy
-2
512m
15
18 a
T
A =J y dx
0
T
= J v sin x dx
0
= 2.43 (GDC)
b
T
V= T[f y? dx
0
s
= nf x sin? x dx
0
= 7.75 (GDC)
‘ HODDER
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Tip: Unlike part a, this could be calculated exactly by algebra, using integration by parts: 2
n T (" S
nj xsinzxdx=—j x(1 — cos 2x) dx 5
0 2Jy ©
T (7]
=—(fxdx—fx0052xdx g
X
1" o
T__< xsm2x —EJ; sin 2x dx) =
o n[ ) ]
=7 t7 cos 2x
7T3
4
= 7.75 (GDC)
19 a
y=+x3+9
y2=x3+9
x3=y2-9
x=3/y2-9
x? =Y (2 —9)?
b
3
A =j —x dy
0
3 1
- [ o2 -9 ay
0
= 5.25 (GDC)
ci
0
V, = r[j y? dx
-39
0
= nf x3+9 dx
-39
= 44.1 (GDC)
cii

3
Vy=7tfx2dy
0

3
= nf V(2 —=9)2 dx
0

=30.1 (GDC)
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20 Boundary points are (1,1) and (3,%) ,and the curve is x = % g
1 S
_ 2 S
V= T[fl x* dy =
3 »
1 3
_ -2
=)o ay £
3 o
17" =
= |- _]
yi1
3
=n(3-1)
=2n

21

The volume if the entire rectangle with opposite vertices at the origin and at (20, 4) is
T X 202 X 4

The volume of revolution of the curve arc will give the inner volume V,, so the required

volume is the difference.
y=vVvx—4sox=4+y?
4

V, = nf x? dy
0
4
=7Tf 16 + 8y? + y* dy
0
_ 6592
15
Then the required volume V is given by
- (1600 6592) _ 17408 3646
- 15 )" 15 7
22
T
V, = nf y? dx
0
T
= nf sin? x dx
0
2
23 a
Yy
y=vz
0 T
‘ HODDER
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

c
y =+xsox = y?
The limits of the curve arc are (0,0) and (9, 3)

3
Vy=7tfx2dy
0

3
=ﬂfy‘*dy
0

_243 153
= z T~

24 a A:(0,2),B: (2,0)
b

2
Area =f y dx
0
2
= | (2—x)e* dx
0
= 4.39 (GDC)
c
2
V, = rtf y? dx
0
2
= nf (2 —x)%e?* dx
0
= 32.7 (GDC)

25
y-intercept is at (0, 1)

y = x23+lsox2=y2—1

— 2
V,=m f x“ dy
1
3
= f y?2—1dy
1
1, ]3
=71 |— —
3 yo =y )
20
=—"
3
(> HODDER
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26

Volume of revolution of the shaded region will be given by the difference between the
volume of revolution of the curve arc V,, and volume of revolution of the line (the latter
producing a cylinder).

Intersection points are (2,0) and (2, 2)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2
Vznf x2dy—mx22x2
0

2
=T[f 2+2y—y?)?dy—8n
0

72
=g m- 87 (GDC)
32

27 a

Ina
A=J x dy
0

The shaded area can also be seen as the area of the rectangle formed by the axes and
with vertices at the origin and (a, In a) less the unshaded area under the curve between
(1,0) and (a,Ina).

a

a—1=alna—f y dx
la
=alna—f Inx dx
1

a
Soflnx dx =alna—a+1
1

28 a

h
Gradient is — ot with intercept (0, h)

h
Line has equation y = — X +h

hx +ry =rh

0 Friaay
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b
If the line between the two points is rotated about the y-axis, the resultant shape is a

cone of radius r and height h, with axis along the y-axis.

h
V=7Tf x? dy
0
horh —ry\?
”fo ( h ) dy

hy.2
=71'J; ﬁ(hz—Zhy+y2) dy

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

r? 1 .7"
— [hzy — hy* + —y3]
37 1o

nr 3 13 13)
h2 (h — B+ zh
=§7'L'Th
29 a x2+y?=r?

Considering the curve y = Vr? — x? for x between —r and r, a sphere is formed by
rotating the curve about the x-axis:

-
V=7Tf y? dx
-r

1 1
r3 ——r + 13 ——r)

Z 3
_ 3
=3mr
30 a
V1= x2’ V2 = \/;
Intersections where y; = y,
x% =+/x
xt=x
=1lor0
x =1or0.
Intersections are at (0,0) and (1,1)
b

1
Vx=ﬂf y3 —yi dx
0

1
=r f x —x* dx
=T X° — —x
[2 1,
BET
(> HODDER
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31
/[
The region is symmetrical about x = 7

so the calculation can be made by just considering the part of the region under y = sin x
and doubling the result.
T

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

4
V=2nf sin? x dx
OTL'
z1
=21rf —=(1—cos2x) dx
0 2
T

_2[1 1_2]4
=2m|>x —7sin2x

_71' — 27
4

32 a
Y1 =x%y, =2x
Intersections where y; = y,
2 =2x
x=0o0r2
Intersections are (0,0) and (2, 4)
b

4
Vy=7tf x? —x2 dy
0

33
The boundary points on the curve are at (p, p3) and (q, ¢*)

1 14-q 1 4 4
A—fp)’dx—[zx] _Z(q -p®)

a? a? 3
B=J xdy=f y3 dy = [ y§] =—(q*-p")
. . 4 4

3

The ratio of A: B is therefore 1: 3, 1ndependent of p and gq.

0 Friaay
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34 a y =In(x —2)
b
x=e’+2

The volume obtained rotating y = Inx for 1 < x < e is the same as when the curve
= In(x — 2) for 3 < x < e + 2 is rotated about the line x = 0. Boundary points are
(3,0)and (e + 2,1)
1

I/yznf x?dy
0

1
=T[f e?y + 4e¥ + 4 dy
0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1 1
= n[—ezy + 4e¥ + 4y]

2 0
(et 4ot a1 4)
_”(ze © 2

T
=§(e2+8e—1)

35 a

1| y=cosz

b
The volume obtained is the same as for y = cos x + 1 rotated about the line y = 0 (the
x-axis).

Vs
Vx:ﬂf y? dx
—TT

T
=T[f cos’x+2cosx +1 dx
—TT

T
1
=T[f E(c052x+1)+2cosx+1 dx
—TT

- [1 in 2x + 2 sinx + o ]n
= | sin2x + 2sinx zx_n
= 312

0 Friaay
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36 a g
Y = arccos X so X = CoSy k=)
: 5
R=f x dy %
o A
=1;sin9 ;o

Whenx =a,y =6 soa = cosf
Then sinf = V1 — a2
c
The area comprising both R and the rectangle below it is given by the integral

a
fydx
0

The rectangle has area a@ = a arccos a
Therefore

a
f arccosx dx =R +aarccosa =1—+/1—a? + aarccos a
0

Mixed Practice

1
y = arcsin(3x)

, 3 ,<1) 3 23
= ———— SO —_— = — =
Y V1 — 9x2 Y \6

2

n n
6 6
_[l sec®(2x) dx = tan(Zx)]l

. :

3 a
y = secx
y' =secxtanx
y" = secxtan®x + sec3 x
b
A point of inflection occurs when y"' (x) = 0
y"(x) = sec® x (sin?x + 1)
Since secx # 0 for any real x and sin? x + 1 > 1 for real x, it follows that y"'(x) # 0
for real x.
Therefore there are no points of inflection.
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4 n
y = 10 S
y' =10%In10 5
y" = 10*(In 10)? >
y"" =10%(In10)3 =
S -
e
V= T[j y? dx =
12e
=n| (Inx)? dx
1
= 19.0 (GDC)
6

Implicit differentiation:
x? —15y%y' =0

,_2x2
y _Syz
I| _8
y (2,1)—5
7

Let3x =uso3dx =du

[romte=[ o
T+9x2 X7 ) Tz

= 2arctanu + ¢
= 2arctan(3x) + ¢

8

If a side length is x then Volume V = x3

V = 3x%x

When x = 12,% = 0.6 then V = 259.2 cm® s™?
9

y = 3sin(2mx)
y' = 61 cos(2mx)

) (_) — 61 x (J?) = —31V3 ~ —16.3

10

Lety =x%e*for—3<x<3

y' = Qx—x?)e™*=x(2—x)e™*
y=0=>x=0o0rx =2

y(—3) = 9e3 ~ 181

y(0) =0

y(2) = 4e7% = 0.541

y(3) = 9e73 ~ 0.448

The maximum value is approximately 181

11 a

Surface area equals the two square a X a faces and the four rectangular a X h faces.
S =2a? + 4ah

V =a?h =1000soh = 1000a?

Then S = 2a? + 4000a™?

0 Friaay
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b
S" = 4a — 4000a2
§'=0= a=1000a"?

a® = 1000
a=10
9)

S"” =4+ 8000a® > 0 for a = 10 so this represents a minimum of the function S
$(10) = 200 + 400 = 600 cm?
12 a

5—x A
GIDGx—-2) x+1 x—2
Multiplying by the denominator on the LHS:
5—x=A(x—-2)+B(x+1)
Substituting:
x=—-1:6=-3A=2A4A=-2
x=2:3=3B=>B=1

5—x 1 2
x+D(x-2) x—2 x+1
b)

f5 5-x _fS 1 24
3 X2—x—2 *= s Xx—2 x+1 x

= [In]x — 2| — 2In|x + 1|13
=(In3—-2In6)—(n1—-21In4)
=ln3—-2In6+21ln4

3 X 42
=In o
=n(3)
13

Implicit differentiation:
3x2y3 —y + (Bx3y?2 —x)y' =0
, ¥y —3x%y?
Y T3y —x
, 2
Vi = ) =-1
Normal gradient is therefore 1, through (1, 1).
Normal has equation y = x

for some constants 4 and B

14 a

y = xe3¥

y' = (1+ 3x)e3*
b

Proposition: y™(x) = (n3" 1 4+ x3™)e3* forn > 1
Basecase:  y'(x) = (1 + 3x)e3* = (1 x 3° + x x 31)e3* so the proposition is true
forn=1
Inductive step: Assume the proposition is true forn = k > 1
So y®(x) = (k3*~1 + x3k)e3*
Working towards: y*+V (x) = ((k + 1)3F + x3k+1)e3x

0 Friaay

LEARN MORE Mathematics for the IB Diploma: Analysis and approaches HL 50

© Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




d
Y = =y @)

=% (k3k~1 + x3%)e3* using the assumption

= (3[k3*~1 + x3F] + 3%)e3*
= (k3% + x3*+1 4 3k)e3x
= ((k +1)3% + x3k+1)e3x

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € Z* by the principle of mathematical
induction.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

c
Stationary points occur wherever y' = 0

1
(1 + 3x)e3* = 0 has a single solution at x = — 3
(ool
Y \73)~ 3))°
> 0 so this is a local minimum and not a point of inflection

1 1 o . 1 1
y(— —) = —— so the minimum is at (—— ——)

3 3e 3" 3e

d
Points of inflection occur when y"' = 0
(6 + 9x)e3* = 0 has a single solution at x = — 3

(2)_ 2 the mini _t(z 2)

y\~3)= ~3 sotheminimumisa 3" 30

e

y

inflection

minimum

0 Friaay
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5]

15
d x+h)—yx
First principles differentiation:—y = lim ¥ ) ~y()
dx h-o h
y=x3-3x
dy . ((x+h)3-3x+h)—(x3-3x)
— = lim
dx h—o h
. x3+3x2h+3xh2+h3—3x—3h—x3+3x}
= lim
h-0 h
. {3x2h + 3xh? + h3 — 3h}
= lim
h-0 h
= }lir%{3x2 + 2xh + h? — 3}
=3x2-3
16
y = e2x+1
Proposition: y™ (x) = 2"e?**1 forn > 0
Base case:  y@(x) = y(x) = 2%e?**1 5o the proposition is true forn = 0

Inductive step: Assume the proposition is true forn = k > 0
So y(k)(x) — 2k62x+1
Working towards: y*+V (x) = 2k+1e2x+1

d
yE D (x) = o ©(x)
¥

~dx
=2 2ke2x+1
— 2k+1e2x+1

— 2ke2¥*1 ysing the assumption

So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

17

1
— A — — (1 — -1
y=y=1_5,=0-2x)

Proposition: y™(x) = 2"n! (1 —2x)™" ! forn > 0
Basecase:  y@(x) = y(x) = 2° x 0! x (1 — 2x)~°~1 so the proposition is true for
n=20
Inductive step: Assume the proposition is true forn = k > 0
So y® (x) = 2kk! (1 — 2x)~*1
Working towards: y*+V (x) = 281 (k + 1)! (1 — 2x) k2

d
(k+1) — — ,E®
y (x) P (x)

o 2kk! (1 — 2x)7*~1 using the assumption
= —2(=k — 1) x 2¥k! (1 — 2x)7*~2 using the Chain Rule
= 241 (k 4 1)1 (1 — 2x) k2
So the proposition is true forn = k + 1
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
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Conclusion:

The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

18
y = x%e*
Proposition: y™(x) = (x2 4+ 2nx + n(n — 1))e* forn > 0
Basecase: ¥y @ (x) = y(x) = (x? + 2(0)x + 0(0 — 1))e* so the proposition is true
forn=20
Inductive step: Assume the proposition is true forn = k > 0
So y®(x) = (x? + 2kx + k(k — 1))e*
Working towards: y*+V (x) = (x2 + 2(k + D)x + (k + 1)k)e*

d
y*D (x) = y(") (x)

= a (x? + 2kx + k(k — 1))e* using the assumption

= (x% + 2kx + k(k — 1) + 2x + 2k)e* using the Product Rule
=(x%2+2(k + Dx+ k(k + 1))e*
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

19 a
f(2) =22=4 =k x 32

k_4
9
b

f(x)_{gx?,"lnB(x>2)

Since f'(x) is not continuous at x = 2, f(x) is not differentiable here.

2*In2 (x < 2)

20
Using L’Hopital’s rule:

o (3* -1 - (3*In3
llm{ }=11m{ 1 }=ln3

x-0 X x-0

21
Using L Hopital’s rule (repeatedly):

. (Sinx —x . (cosx—1
i (EX ) (€052
x-0(tanx —x) x-o0lsec?x—1
—sinx
= lim {—}
x—0 (2 sec? x tan x

_ l { — COS X }
xeg 2sec*x + 2sec?tan?x

2
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22
j22x+5d _JZ 2x N 5 q
cxZ+d T ) kel k2 et
5 N E
_ 2 2 z
—[ln(x +4)+2arctan(2)]

0
= <1n8+;(%)>—(1n4+0)

— 24"

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

23 a a=In1l1
b

1
=In(5x+ 1) sox =§(e3’— 1)

In11
Area = f x dy
0

1
=2-<ln11 = 1.52 (GDO)

C
In11

Volume = f x? dy
0

In11
= —(e2Y —2eY + 1
nfo 25(e e’ +1) dy
= 2y__ y 4
n[soe e’ + y]

121 22 1 2
= (———+—ln11)—n<———>

501 25 25 50 25
40+ 1In1l)m
_ @O+ InIDT <23 @po)
25

24 a
If A has coordinates (a, 0) then the base of the rectangle has length 2a and the height is
9 — a?
Area = 2a(9 — a?)
d Area

=18 — 6a?

da

Stationary value when a = /3
A has coordinates (\/§, 0)
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b If a = 0 or 3, the area is zero.
25
y=In(x*)soy(1) = 0,y(e?) = 4
x? =eY

4
Volume = nf x? dy
0

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

4
= nf e¥ dy
0
= m[e”]3
=n(e*-1)
26
y = cosx

n
2

Volume = T[f y? dx
0

T
2 2
=T cos“x dx
0
T
21
=m | =(1+cos2x) dx
0 2
T
[1 +1 09 ]2
=1 |=x + —sin 2x
2 4 0

T

4

27

Curve intersection at (1, 1)
First curve: y; = |x| so x2 = y?

Second curve: y, =2 —x*sox? = /2 —y,
1 2

Volume = th x? dy, + nJ x? dy,
0 L

= (flyl dy; + f(Z YZ)OdeZ)
([3y3L+[--<2 )
G+3

Axis intercepts are (£3,0) and (0, +£2)
Volume rotated about x-axis:

2
Vx:ﬂf y? dx
-2

2 4
=7Tj (4——x2) dx
2 9

S

=1 [4x - —x ]
-2
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- r(16-2) :
27 o
368 5
7" 5
Volume rotated about y-axis: 3
3
~
V, = nf x? dy 5
-3 =
9
o3
3
=1 [9y —=y ]
o2
n(se-7
_ 81
29
1
Letu=Ilnx,v' =x3sou’' =x"Lv= Zx“

Integration by parts: f uv'dx = uv — J u'v dx

e 1 e re1
fx3lnx dx=[zx41nx] —f —x3 dx
1

=[4x lnx——x]
- (3e* +1)
“16°
30
Letu =Vx + 1sox = u? — 1 and then dx = 2u du
Limits:
Whenx =-1,u=0
Whenx =3, u =2
31 21
—eV¥tl dx=j —e¥ x 2u du
2 0 2

2
= j ue' du
0
2
= [ue%]3 — f e* du(using integration by parts)
0
= [ue* — e*]3
=e’+1
31 a
Lletu=t,v=etsou=1v=—et

Integration by parts: f uvdt = uv — fz’w dt

fte‘t dt = —te t + f e t dt

=—(t+1Det+c
(> HODDER
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b 7
c
Letu = x? so du = 2x dx o
Limits: E
Whenx =0,u=0 8
Whenx =1,u=1 °
L 2 1 2 g
j 2x3e ™" dx = J x%e ™" x 2x dx o
0 0 <
1
= J ue ™ du
0
= [+ De}
=—(2e ) +1
2
=1-Z2
e

32
Letu =x%41sodu = 2xdx

1
fx3\/x2 +1dx = fzxlexz +1x2x dx
1
= Jz(u—l)\/ﬂ du

1 1

—_ | Z,15_2,05
Jzu 2u du
1 1

— .25 _ .15
5u 3u +c
1
5

(x? +1)25——(x + 1D +¢

33 a
Letu = vVxsox = u?and sodx = 2u du

j\/}eﬁdx=Jue”x2udu
b

= J 2u?et du
Limits:

Whenx =0, u=0
Whenx =4,u =2

d%q dP dq d*p
— 2 21 — =e%,—= = e*
d dpd
Integration by parts (twice): f di =p £ B dz dZ du
dg dp d*p

P awd )

2 2
f 2u?et du = [e*(u? — 2u)]3 +f 2e* du
0 0
= [e*(u? — 2u + 2)]3

=4e?—4+2-2
=4(e?-1)
(> HODDER
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34
Letx = tan @ sodx = sec?6do

R S
1+ x2 = 1+tar129Sec

=f1d9

=0+c
= arctanx 4+ ¢

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

35
f(x) = {e"‘z(—x3 +2x2+x)x <1
ax+b x>1
Then
f,(x):{e‘xz(—SxZ+4x+1+2x4—4x3—2x2)xSl
a x>1

If the function is continuous at x = 1 then 2e" ! =a + b

If the function is differentiable at x = 1 thene (-3 +4+14+2—-4-2) =
—2e l=a

b=2el—a=4e?

36

y; = Vx e* and y, = ev/x Intersections occur when vxe* = evx
Vx(e*—e) =0

x=0o0orx=1
1

Volume = j yZ —y? dx
0

1
= th xe? — xe?* dx
0

1 1 1
=7t[—x2e2] —nf xe?* dx
2 0 0

1 1
= —me? —nJ xe?* dx
2 0

Letu=x,v' =e**sou’ =1,v =§e2x

Integration by parts: j uv' dx = uv — J u'v dx

1 1 1
1 1
nf xe* dx =n [—xezx] —f —e2* dx
0 2 o Jo 2
= r|(3x-7)e].
=m|(5x—7)e i

_ (12+1)
A VA

Volume = 7 (= ¢2 (12+1)
olume =1 Ze 4e 2

T
=Z(e2 -1
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37 a o
4 aresingg = L S
dx arcsinx) = m E
b @
L i 1 ! g
t = ) — — E—— =
etu arcsinx ,v sou W v X g
=

Integration by parts: f uv'dx = uv — fu’v dx
\]‘ . d . f x d
arcsinx dx = xarcsinx — | —— dx
V1 —x?

= xarcsinx ++/1—x%2+c

38 a
2_8x+25=(x—4)2—16+25
=(x—-4)*+9
b
J‘ 2x+7 _JZx—8+15
—8x+25 —8x + 25
_f 2x — 8 N 15 :
) x2—8x+25 (x—4)2+9

15 x—4
= In|x? — 8x + 25| +?arctan< 3 >+c

x—4
=ln(x2—8x+25)+Sarctan( 3 )+c

It is not incorrect to write the logarithm argument as a modulus, but the completed square shows
that it is always positive, so this is not actually necessary in this case.

39
Let one of the vertices be at (a, 0).

Then the base of the rectangle is 2a and the height of the rectangle is Vr? — a?
Area = 2a+/12 — a? = 2a(r? — a?)%®
d Area

= 2(r? — a?)%5 — 2a?(r? — q?)705

da
= (2r? — 2a? — 2a®>)(r? — a?)7%®
Stationary point, which represents maximum area (since minimum area is clearly at a =

Qora=r):
2 2 r
2r —4a°=0=>a=—
V2
A ( r ) 2r r )
rea|l =|=—=X—==
V2/ N2 2
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Letx = asinf sodx = acosf do@

j\/az—xz dx_JaCOSHXaCOSH do

=aJcos 6 do

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

a2

=7f(1+c0529) de
a2

= (20 +sin26) +

2

a
=7(0 +sinfcosf) + ¢

a—z(arcsm( )+— 1—(2)2 +c

a? Xy X
= —arcsin (—) +=vya%2—x%2+c¢
2 a 2

a? X\ X .
N Nz a2 2
= 2arcsm(a)+2 a xl
2 2 T %
ac /m a
(5G)+0)-(5(-5)+0)
_azn
2
Radius of the semicircle is a = 6, so Area = 187w
41
e +e™ e —e™
Letx=Tsodx=Tdu

e +e % =2xs0e?* —2xe* +1=0,e*
= (x ++/x2%2 — 1) ; take the positive root wlog.

e? +2 e e — 2 4 e72u el — et 2
2 = 2 _ = =
X 2 SO X 1 2 ( > )
Limits:
Whenx =2,u = 1n(2 + \/§)
When x = 4,u = In(4 + V15)
4 1 ln(4+\/ﬁ)
f dx = J 1 du
2 Vx2 -1 In(2++3)
_ 1 1In(4+V15)
= Ul (24v3)
= 1n(4 + \/1_5) — ln(2 + \/§)
| (4 + JE)
=In| ———
2+4/3
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42
Let r be the distance from the bird to the observer (obliquely)
Then r = 35 cosec
Implicit differentiation:
+ = —35cosecf cotf @
.1

When 6 =1.2,6 = 20

35cosec1.2 cot1.2

F=— 20 =—-0.243ms™ !

The bird’s distance to the observer is decreasing at a rate 0.243 m s
43

Let d be the distance from the point (0, 1) to a point on the curve (x, sin x)
d = /x% + (sinx — 1)2

From GDC, minimum d is d(0.478) = 0.721

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

-1

44
Using L Hopital’s Rule:

) . (sinx —1
lim{tan x — secx} = lim {—}
x—% x—% COS X

CoSs X
=i
xl_)r% {— sin x}
=0
45
Let L = lim {x arctan x — n—x
X—00 2
T
x? arctan X—=
L = lim 2)
X—00
= lim {2x (arctanx -—=)+ using L'Hopital’s Rule
x—00 2 1+

1
i a1
Jlim x(2arctanx — ) + 1T 2

s

= J11_1)1010 {Zx (arctanx - E)} +1
=2L+1

Rearranging: L = —1

46 a

Using compound angle formula:

cos (x + %) = COS X COS (%) — sin x sin (%)

=0cosx —1sinx

= —sinx

b

... dn nm
Proposition: ppe (cosx) = cos(x + 7) forn>1

d . e
Base case: = (cosx) = —sinx = cos (x + g) from part a so the proposition is true
forn=1
Inductive step: Assume the proposition is true forn = k > 1
k
L1
So —(cosx) = cos(x + —
‘ HODDER
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Working towards: T (Cos x) = cos(x + M) g
dk+1 d dk .‘.g
FpEE (cosx) = e (d ~ (cos x) o
d s . _ =
=— (cos <x + —)) using the assumption 3
dx 2 5
) km =
= —sin (x + 7)

km w )
= cos (x + > + E) using part a

(k+ 1m
)
So the proposition is true forn = k + 1

Conclusion:

The proposition is true for n = 1, and, if true for n = k, it is also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.

47

e¥ + ye ™ = 2¢3

Implicit differentiation:

e*—e*y+e*y' =0

y' =y—e*

Stationary point occurs when y’' = 0

y = e2x

Substituting into the curve equation, y = 2e
2e** =23 s0x =3

The stationary point is at (3, €®)

= COoS (x +

3+x __ e2x:

48 a

x4+ xy+y*=12

Implicit differentiation:

2x+y+(x+2y)y'=0

, 2x +y

Y= x+ 2y

Stationary points occur where y' = 0:

y = —2x

Substituting into the curve equation:

3x2 =12

x=%2

Stationary points are (2, —4) and (—2,4)
b

2x+y+(x+2y)y'=0

Implicit differentiation:

24y + (A +2y)y '+ (x+2y)y" =0

(x+2y)y" =-2-(2+2y)y

At stationary points,y’ = 0, so (x + 2y)y" = -2
c

At (2,—4),—6y" = —-2soy" > 0:(2,—4) is a local minimum

At (—=2,4),6y" = —-2soy" > 0:(—2,4) is a local maximum

0 Friaay
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49 a
1m
o 0.5 m
[
1.7m 1.7m
T m

In the diagram above:
0.5 1.5
a = arctan (—), [ = arctan (—)
X x
1.5 0.5
0 = — a = arctan (—) — arctan (—)
X X

b

g 15 1 05 1
) @y
0.5 1.5

T X2+025 x2+ 225
_ 0.5(x2 +2.25) — 1L.5(x% + 0.25)

(x? + 0.25)(x? + 2.25)
—x2+40.75

~ (2 +025)(x2 + 2.25)
Maximum 8 occurs when 8’ = 0:

3
x=— (reject negative root, given context)

The picture will appear as large as possible when x = 0.5v/3 ~ 0.866 m

1
At this distance, § = arctan(v3) — arctan (—)
V3
T T

3 6

_I

6
50 a
Gradient is P passing through (a, 0)

h
Li tion is v = _
ine equation is y ' a (x—a)
‘ HODDER
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b %)
Rearranging the line equation: _S
(b —a)y 5
x=a+——m— ©
h )

n °

V=m f x% dy Qo
Oh s

B (ah + (b — a)y)? q =

h
= %J a’h? + 2a(b — a)y + (b — a)?y? dy
0

T 1 h
a’h?y +a(b —a)y? + §(b - a)2y3]
0

~ [z
T 2.3 2, 1 213
=ﬁah +a(b—a)h +§(b—a) h
1 2 1
=7TZ <a2+ab—a2+§b2—§ab+§a2)
s
=?(a2+ab+b2)
51 a
y
2 y=1r2_ g2
& y=Vr?— 22
> T
—r r
b

Rearranging the curve formulae for the upper right quadrant of both curves:
Parabola: x> =12 —y

Circle: x? = r? — y?
2

r r
Difference in volumes = <f r2 —y? dy — f r2—y dy)
0 0
1 .0 1 1"
_ 2., =03 |20, 202
(-3 - -3 )
2 1
— (2.3 _ .4
& (3r 2" )
If the difference is zero, then
2 ,_1,
3 re = > r
_ 4
=3
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52 a ()
Curve to pass through (0, 10), (20.5, 25), (50, 17.5), (55,18). 5
Simultaneous equations: E
d=10 (1) o
(20.5)%3a + (20.5)%b + 20.5¢ + d = 25 (2) 3
125000a + 2500b + 50c +d = 17.5 (3) x
166375a + 3025b + 55c + d = 18 (4) S
Solving using GDC:

a = 0.000545,b = —0.0582,c = 1.69,d = 10
y = 0.000545x3 — 0.0582x% + 1.69x + 10

b
55
V= nf y? dx
0
= 74 400 cm?
= 74.4 litres
53 a

k=tanf so1l+ k% =1+ tan?8 = sec?8
secO =+/1+ k2

b
Ifk =tan 6 then @ = arctank

arctank

Shaded area = f x dy
0

6
=f tany dy
0

= [Insecy]§
= In(sec) —In(1)

= In (w/1 n kZ)
= %ln(l + k?)

c
The complete rectangle bounded by the axes and the lines y = arctan k and x = k has
area k arctan k
The area between the curve and the x-axis is the remainder after the area from part b is
removed from this rectangle.

k
1
f arctanx dx = karctank — Eln(l + k?)
0
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54 a
: : : : 1
Since the sine of any integer multiple of = has value zero, x = - for somen € Z*

111111111

<x< =1 - — — — — — — —
Thenfor0.1<x<1,x= 12345678910

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

b

T
Letu =— sodu = ——zdx

X X
Limits:

1
When x = 2u=m+m
n+1 ( )

Whenx =—,u =nnm
) n

n M T nr )
—sin (—) dx = —sinu du
1 x2 x

1 (n+D)m

(n+Dm
= j sinu du
nm

= [—cosul,, (n+1)m

{2 (n even)
2 (nodd)

(*)The interval for integration [0.1, 1] can be considered as the union of the intervals

[1—10,%] , E,%] y e E,ﬂ, so that the integral over [0.1, 1] is the sum of the integrals over the

smaller intervals.

(x%) It is legitimate to state that the modulus of the integral is the same as the integral of the
modulus in this instance because in each of the intervals the function mx =2 sin(mx 1) is
entirely non-negative or entirely non-positive.
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55
Implicit differentiation:
4x+2yy' =0
, 2x
y =—-—
y

b
The normal at a point (a, b) has gradient 52 and b = +/18 — 2a?

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

Normal has equationy — b = 52 (x—a)

Substituting x = 1,y = 0 to find a condition on a for which the normal passes through
(1,0):

b = b 1
= —(1-a

b
—(1—a+2a)=
2a( a+2a)=0

b=0ora=-1
Points are (+3,0) and (—1, +4)
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5]

These are worked solutions to the colour-coded problem-solving questions from the exercises in
the Student’s Book. This excludes the drill questions.

Throughout this chapter the worked solutions will adopt the notation y;g for the general
solution of y and ypg for a particular solution of y, given initial or boundary conditions.

Exercise 11A

17 a

d?y

F = 8e2"

% = —4e** + ¢

Ves = —2e** +cx +d
b

y(0)=—-2+d=1=>d=3
y'(0)=—4+c=-2=>c=2
yps = 3 + 2x — 2e**

18

Tip: A table is shown here in the working so that students can check the detail of their calculator
output.

A full table of results is not typically needed for this sort of problem unless specifically required
in the examination question, but you should lay out the basis by which you generate the values
(the iteration formula) and then give the end results, indicating use of GDC.

d
di’ =2x=f(xy)
VYn+1 = Yn + B X f(xn, )
Xo =Y =0
n x y (h=0.1) y (h=10.2)
0 0 0 0
1 0.1 0
2 0.2 0.02 0
3 0.3 0.06
4 0.4 0.12 0.08
5 0.5 0.2
6 0.6 0.3 0.24
7 0.7 0.42
8 0.8 0.56 0.48
9 0.9 0.72
10 1 0.9 0.8
HODDER
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11 1.1 1.1 )
12 1.2 1.32 12 o
13 13 1.56 5
14 1.4 1.82 1.68 o
15 15 2.1 kA
16 16 2.4 2.24 <
17 1.7 2.72 ;°
18 18 3.06 2.88
19 1.9 3.42
20 2 3.8 36

a For h = 0.1:

i y(1) =09 ii y(2) = 3.8

b For h = 0.2:

i y(1) = 0.8 ii y(2) = 3.6

C

Yes = X% +c

y(0)=0=c

Yps = x°

So, in absolute difference, bii is the furthest from the true value.

19
dy xy
Fivi x+y_f( Xx,y)

Yn+1 = Yn + h X f(xn; yn)
a From GDC: y(10) = 31.4
b Using a smaller step length would improve the estimate.

20
Calculating distance cumulatively, with

dpyr =dy + (tn+1 - tn)vn

n 0 1 2 3 4 5

t, 0 3 6 9 12 15
Uy 0 6 12 19 24 27
d, 0 0 18 54 | 111 | 183

Estimate distance travelled in the first 15 seconds as 183 m

21
Calculating distance cumulatively, with
dpi1 = dp + (tpsr — t)y

n 0 1 2 3 4 5
tn 0 3 6 9 12 15
Vn 20 15 10 8 6 5
d 0 60 | 105 | 135 | 159 | 177

Estimate distance travelled in the first 15 seconds as 177 m

‘ HODDER Mathematics for the IB Diploma: Analysis and approaches HL 2
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—=y*-x* =f(x,y)

Yn+1 =Yn t+ h Xf(xn;Yn)
xXo=1y,=1h=0.1
From GDC:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

23 a
dy | B
v sin(x +y) = f(x,y)

Yn+1 = Yn + h X f(x0, yn)
Xog = O,yo = O,h =0.1
From GDC:

v

2

0 1 2 3 4
b
From the calculator data table, maximum y for 0 < x < 4 is approximately 1.1

24

Tip: Since the dependent variable in this question is h, we need a new letter for the Euler
method step size. Greek letter delta (8) is often used for small increments.

dh

hny1 = hn + 6 X f(tn, hn)
to=0,hy =2, =0.1
a
From GDC:
h(1) = 1.46 m
b
In the model using Euler’s approximation, h(2.5) =~ 0.05 m, h(2.6) = —0.08 m
It will take approximately 3 seconds for the ash to reach the fire.

‘ HODDER Mathematics for the IB Diploma: Analysis and approaches HL 3
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

0.1
—k(4nr?) = —-0.1s0k =
(4mr#) SO pp—

b
Integrating:
r=1r(0)—kt

af 3
T(O) = 5
0)

[ o1 s (3
Then whenr = 0,t = = r(0) = (W) = 40n(r(0)) = 407 (87t>

= 15 minutes

= 0.0328

26

Letz = —
etz 3

x
- dz d?y B .
en — =7 =—xe

Euler’s method:

y(x+h) =ykx)+hxz(x)
z(x + h) = z(x) + h(—xe ")
y(0) = 0,2(0) = 1,h = 0.1
From GDC, y(1) = 0.904

27

2

dx  dx?2
Euler’s method:
y(x+h) =y(x)+ hxz(x)

z(x + h) = z(x) + h(2x + y(x))
a

y(0) =1,2(0) = 2,h = 0.1

Then

y(0.1) ~ y(0) + 0.1z(0) = 1.2

3_3:(0'1) =2(0.1) ~2(0) + 0.1(2%x 0+ 1) = 2.1

b
From GDC, y(1) = 3.96
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28

Euler’s method:

x(t+h) =x(t)+hxx(t)
y(t+h)=y()+hxy()
x(0)=1,y(0) =2,h=0.1

From GDC, x(1) = 9.46,y(1) = 3.71

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Exercise 11B

In many of these solutions, the initial unknown constant will be multiplied by a constant during

rearrangement; a new letter is used for the amended constant without further justification, unless
the transformation imposes limits upon it. For example, in Q9, the initial constant of integration
k is multiplied by 3 to become c. Just as k is an arbitrary constant, so is 3k = ¢, so no comment
is required.

8
fy‘z dy=f1 dx
-y l=x+c
_ 1
Yes = T ke
9
fyz dy=fcosx dx
1

§y3 =sinx +k
Vs = V3sinx + ¢

10

fey dy=J2x dx
ey =x%+¢c

yes = In(x? + ¢)

11 a

fy‘l dy=fsec2x dx

In|y| =tanx + ¢
|yl = e‘e* = Ae"™@"* for arbitrary constant A > 0
y = Ae'@1* for arbitrary constant A
b
y(0)=4=4
y — 4etanx
12

f4ydy=f9x2 dx

2y2 =3x3+c¢
y(0) =3
2(3)2=3(0)*+¢
c=18

2y2 = 3x% + 18
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fy‘l dy=Jx‘1 dx

In|y| =In|x| + ¢

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

In |X| =c

[l =e=x

K > 0 is an arbitrary constant. Removing the modulus restriction,
y

Z=A

x

where A # 0 is an arbitrary constant.

Yes = Ax,A *0

Since y = 0 is also a solution of the differential equation, the full solution is
Yes = Ax with no restriction on constant A.

14

fy‘z dy=f2xdx

—yl=x%+¢
1

Yes = iy

15

fyzdy=f3xdx

1 3

3 =22

3y 2x +c
1o,

2(2)3 =2 ()2
3(3) 2(2) +c
9=6+c

c=3

9
y3 = (Exz + 9)

3/9
Yps = E(x2+2)

16 a

J-(y—l)‘1 dy=J2x+4 dx
Inly—1]|=x%?+4x+¢
ly — 1| = eeX’*+%* = Ae***+4* for arbitrary constant A > 0
y — 1 = Ae***** for arbitrary A
Ves = 1 + AeX’+4x
b
y(0)=2=1+A4>A4=1
yps =1+ ex2+4x
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fseczy dy=Jcosx dx
tany =sinx + k

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

sinx —tany = -k =c¢
18 a
dm_ X
ac
dm
Whenm=25,a=—550k=0.2
b
dm
—=—02m

fm‘ldm f —0.2 dt

Injm| = —-0.2t + ¢
|m| = e¢e™ %2t = Ae~02¢ for arbitrary constant A > 0
m = Ae~ %2t for arbitrary constant A
m(0) = 25 = 4
m= 256—0.21,“
c
Whenm = 12.5,e %2t = (.5
t =—=5In0.5 = 3.47 seconds

19 a

dN — kN

dt
dN

When N = ZOOO,E =500

k =0.25
b

jN‘l dN =J0.25 dt

In|N| = 0.25t + ¢

IN| = e€e®25¢ = Ae%25¢, for arbitrary constant 4 > 0
N = AeO .25t

N(0) = A = 2000

N(10) = 2000e?° ~ 24 000

20 a
dv _ eyt
dt
dv
WhenV = 300,5 =10=k =10 x 300
dv 3000
dt vV
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b
deV=J3000dt

1
EVZ = 3000t + ¢

V(0) =300 =+é = & =90000

Vps = V6000t + 90000 = 20+/15(t + 15)

21 a

dv
< = 10— 0.1v = —0.1(v — 100)

Tip: When separating variables, it is often useful to factor out the expression so that the variable
taken to the left has a coefficient of 1, and you leave the multiple on the right side. This saves
additional rearrangement later.

f(v —100)"1dv = f —0.1 dt

Injlv —100| = -0.1t + ¢

v — 100] = efe %1 = Ae™ %1, for arbitrary constant 4 > 0

v =100 + Ae 01t

v(0)=0=100+A4A=>A=-100

v =100(1 — e %1)

b)

Velocity is always positive in this model, so distance travelled will be the integral of v
over time:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

3
d(3) =f v dt = 40.8 m
0

22

fy dy=]4e‘2x dx

1

2 — -2 —-2x

Zy e +c

yGS = i ZC - 4‘e_2x
y(0) =-2=+V2c—4

The curve follows the negative root for the model, 2c —4 =4soc = 4

Yps = —242 —e™%*

23

d
d—z—e“y—e e

je‘y dy=Jex dx

—e 7V =e"+c¢
-y =In(—c —e%)
Yes = —In(k —e*)
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24

d_ 2e¥7% = 2e¥e™?Y

Tezy dy =f2ex dx
1 2

e Y=2e"+c

e?y =4e* + k

y = %ln(k + 4e*)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1
y(0)=0 =§ln(k+4) sok=-3

1
y = Eln(4e" -3)

25

d
d—i’=xy+2x+y+2=(x+1)(y+2)

Separating variables:

fy_l_zdy— fx+1dx

In|ly + 2| = —x +x+c

y+2= Ke°'5x X = K ex?t2x
Ves = K ex?+2x _ 9
y(=3) =0 = K/e3 -2

So K =2e 1%

Vps = 2 ex?+2x-3 _ 9
A=2,B=-2

26

jydy=Jsinxdx

1,

5 YGs = ¢ —cosx

Yes = TV2c — 2cosx

y(0) = 10 = ++v2c¢ — 2 so the curve follows the positive root and 2¢ = 102
Yps = V102 — 2 cosx

27 a
dy cosx
dx  siny

fsiny dyzfcosx dx
—cosy +c =sinx
sinx +cosy =c
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28

y=vxsoy =xv' +v
xy' =2x+ 3y

x%v' + xv = 2x + 3xv
xv'+v=2+3v

xv' ' =2+42v
Separating variables:

1 2
f dvzj—dx
1+v X

In|1 + v| = 2In|x| + ¢ = In]A4|x?

|1+ v| =]A]x?

Since A is an unrestricted unknown, we can drop the modulus signs.
y

14+ == Ax?
X
yGS =Ax3 — X
29 a
xyy' = x*+y?

x
Theny’=—+X=v+v‘1wherev=X
y x x

Since y’ can be expressed as a function solely of (xy~1), this is a homogeneous
differential equation.
b
Substitute y = vxsoy' = v + xv’
v+axv' =v+vl
xv' =v71
Separating variables:

1
fvdv=J—dx

X
1,

= In|x| + ¢ = In|Ax|

y? = 2x%In|Ax|
30 a
y 2
,=(2x+y)2=(2+§) =(2+v)zwherev—z
4x2 4 4 X

Since y' can be expressed as a function solely of (xy~1), this is a homogeneous

differential equation.
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)
c
9o
whd
=
(e)
o
o
)
X
[
=




b
Substitute y = vx soy' = v+ xv’
2 +v)?

4
4 4 v?

4
Separating variables:

[aav=] 34
4 + v2 vE x x

v
2 arctan (E) = In|x| + ¢ = In|Ax|

v+xv =

!

Xv =

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

% = tan (%lnleI)
Yes = 2x tan (%lnIAxI)
y(1) =0= 0= 2tan (%lnIAI)
%lnlAl =0sosetA=1
Yps = 2x tan (%lnlxl)
31
,_x2+y2_1+(¥)2
e

Letv =%,soy= vx and theny’' =v'x +v

1+ v?
vix+v=

1+v
, _1—v
v 1+v
1+v 1
f dv=| —dx
1—v X

2 1

j —1dv=|-dx
1—v X

—2In|1l —v|—v=In|x|+c¢
—21n|1 —X| Y In|kx|
xl x

%= —1In ((1 _X)Z) —In]Ax| = —1In (W)

| | Ax|
v =i 25)
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32 a
y

r=9_2
Y X

Letv =¥,soy= vxandtheny' =v'x +v

vix+v=2—-v
vix=2-2v=-2(vr—-1)

1 2
j dv =J—— dx
v—1 X
Inj[v — 1| = =2In|x| + k
In|v — 1| + In|Ax?| =0
In|[A(xy —x?)| =0
Alxy —x%) = +1

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

x2 i A—l
Y=
Since A is an arbitrary constant of unknown sign, we can generalise:
c
Yes =X+ ;
b
y()=5=14+c=>c=4%
4
= + —
Yps =X X
33
, y(3x + 4)
==
1
f; dy =J3x‘1 +4x72 dx
In|y| = 3In|x| —
In |l| =c— :
x3 , X
Yy _ -2
PR

4
P 4
Ygs = x3e“x

y(2)=8=8e"%2>c=2
4

[7resor=[3e
y2+9 Y=
1 y
garctany(g) =In|x| + ¢
arctan (§) = 31In|Ax|

y = 3tan(31n|Ax|)
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35

ﬂ_Zx,/l—y2

dx 1+ x2

f q _f 2x d
J1—y? Y= 1+ x2 X
arcsiny = In|1 + x?| + ¢

y =sinln|1+x?| +¢
y(0)=0,c=0

y = sin (In|1 + x?|)

36

,_yA+x) y
N 1—x2 1—x
(x+-1)

[50- ]

In|y| = —In|1 — xI +c

dx

J— (o]
1—x|_e
Yes = k(1 —x)
y0)=2=k
yps = 2(1 —x)
37

cos?xy’ =secy

jcosy dy=jsec2x dx
siny =tanx +c¢

Yes = arcsin(tanx + ¢)

38 a
N = 0.6N — 0.002N? = 0.002(300N — N?)

1
f— dN=f0.002 de

300N — N2
1
jm dN = 0.002t + ¢
1 1 1
% (N-I-—BOO—N) dN = 0.002t + ¢
n |300——N| = 0.6t + 300ce
N — 06t+k
300 - N 200
N(O)—200=>m—ek=>ek—2
N
=2 0.6t
300N _ “°
N(1 + 2e%6%) = 600e%6¢
60006t 600

Ps = 1 4+ 206t = 2 4+ 06t
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




400
350

300

250 raan

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

200

150
100

50

1T 2 3 4 5 6 7 &°

Ast — oo, N increases towards the limit population 300.

39 a
a=1v=10-0.1v? = -0.1(v?> — 100)

1
fmdv—f—o.l de

1 ( 1 1 )d —J 0.1 dt
20) \v—10 v+10/ Y7 '
|v—10

—-10
v(1+e2) =10(1—e?)
10(1—e2)  10(e? — 1)
T 14e2t 0 e2t41]

b
Letu = e?* + 1sodu = 2e?tdt = 2(u—1) dt
10(e?t — 1)
et +1
10(e?t - 1) 10(u —2) 1
= ‘I‘Zt— dt = f X —
e’t+1 2u—1)
_ J‘ 5(u—2) .
u(u—1)
Partial fractions:
5u—-2) A B
utu—1) u + u—1
Multiplying through by the denominator of the LHS:
5u—-2)=A(u—-1)+Bu
u=1:-5=8B
u=0 —-10=—
5u—2) 10 5

uu—-1) u u-1

v=x=

du

for some constants 4 and B

10
x=]—-— du=10In|u| = 5Injlu —1] +¢
u u-1
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Att=0, x=0andu=2s00=10In24+c=c=-10In2 2

x =10In(e?* + 1) — 5In(e?*) —10In2 [e)

)

= 5(n((e?t + 1)?) — In(e?*) — In4) 3

(2 + 1)2 o

=5In T ©

€ )

B

40 a =
y =xy(y—1)

letz=y lsoz' = -y 2y
2 =—xy'y-1D=—-x(1-y ) =x(z-1)

b

[ ar=[xa
S dz=[xdx

1
Inlz—1|==x%+¢

2
.X'Z
z=14+Ae2
1
Yes = — 2
14 Ae2
O)—l— 1 =>A=2
YO =3=177>47
1
Yps ==
14+ 2e2

41 a

x%y' =xy—x+2

Letu=y+xtsoy=u—xlandy =u' +x

(u’+x‘2)x2 =x(u—xYH—-x+2
24+1=xu—1-x+2

u’x2=xu x

xu' =u—1

-2

b

1 1
f du=f—dx
u—1 b
In|u — 1| = In|x| + ¢ = In(4x)
u—1=Ax
y+xl—1=Ax
yGS=AX+1—X_1
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42

2x—-3y+3)y'=2x—-2y+1
Letz=2x—3ysoz' =2—-3y'
z+3)2-2 2(2x — z
@922, 227D
2z+3)—(z+3)z’ =6x—4x+2z+3
—(z+3)z' =2x-3

f(z+3) dz=J3—2x dx

1
E(z+3)2=3x—x2+c

(z+3)2=6x—2x>+¢C
Whenx =1,y=1s0z=-1
22=6-24+c=>c=0

(z +3)? = 6x — 2x?

(2x —3y +3)? = 6 — 2x?

43 a
dy 4x—y+7

dx 2x+y-—1
dv dv
Letx—u—ly—v+3sodx et
dx—y+7=4u—v,2x+y—-1=2u+v
v
dv_4u—v_4—(a)
du 2u+v v
2+ ()
This is a homogeneous equation because the derivative can be expressed as a function
of the ratio of the variables.
b
dw

Letv—uwsog——ud—+w
dw+ 4 —w
ud T 24w

dw 4 — 3w — w?

du 2+w
2+w dw = J 1 d
Grwd—w) VT u ™
2+w _ +
A+w)(1-w) 44+w 1-w
Multiplying through by the denominator of the LHS:
24+w=A01-w)+ B4 +w)

for some constants 4 and B

3
w=1:3=5B=>B=-

5
2
w=—4 —2=5A>A=~¢
2+w _1(3 2 )
A4+w)(1-w) 5\1-w 44w

1/ 3 z)d _Jld
fS(l—w 4+w) VT L™
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—3In|1 —w|—2In|4+w| + k = 10In|u|
In(Jul®|1 — w34 +w)?) =k

WA -wl@+w)i=c

Substituting back w =5
u—-v)2u+v)=c

Substituting back u = x + L, v =y — 3:
(x—y+4)B3U@x+y+1)2=c

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

44

y' =cos?(x +y)—1
Letz=x+ysoz' =1+y’
z'—1=cos?(z) -1

z' = cos?z

fseczz dz=f1 dx

tanz =x +c
z = arctan(x + ¢)
y=2z—x=arctan(x +c¢) — x

45

y'\/lzxzzw/l—yz .
——dy= d
f,/l—yz Y V1 — x? g

arcsiny = arcsinx + ¢

Taking sine of both sides and using compound angle formulae:
y = sin(arcsin x + ¢) = x cos ¢ + cos(arcsin x) sinc

=xcosc++1—x?sinc

=Cx+Dy1—x2
Where C = cos ¢ is an unknown constant in [—1,1] and D = +V1 — C?2 is also a value
in[—1,1]

V3) 1 _¢V3 D

Y (7) 272 "2

1-CV3=D

1-2CV3+3C?=1-C?

C?-2CV3=0

3 1

C=0D= 1orC=7,D =5
3 1

A—OB——lOI‘A—Z B——E
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46
) 2
M = aM3 - M
a
At a point of inflection, M = 0

i = (Sams g s

Then M = 0 (which only has solution M = 0 or M = % and is never achieved, given the

)
c
9o
whd
=
o
o
o
)
X
[
=

solution of the differential equation found in part b)
1
OrzaM™a—f =0

1 3B
M 3 = —
2a

_(Za)3_ 8a?
38/ " 27pB3
b
1 1. 2.
Letv=Mssof7=§M 3sM
1 a
1>=—(a—BV)=—E(v——)

3 B
f dv—]——dt
v__
1 “ i
n|v ﬁ_ 3 c
a K %
v——==ke
B
a+ke_%
V==
B
M (“+k‘%)
== e
B
c
a3
Ast—>00M—><—)
B
d
M
A
(2)3 e
B8 /
/
/
/
/
/
P -
10 20 30 40 50
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Exercise 11C
— ef3 dx

5 a U = 3%

b
Multiplying both sides by the integrating factor:

d
3x% + 3e3%y = e

d
a(esxy) = pdx

)
c
9o
whd
=
(e)
o
o
)
X
[
=

1
3XA;, — 4x
e =—e"*4+c
Y=%
=—e¥ 4 ce™3¥
Yes 4
6
U= ef —2dx — g—2x

Multiplying both sides by the integrating factor:

e—Zx% _ ze—ny — e—x
S (ey) = e
ey =—e¥+c
Yes = —e¥ + ce?*
7 a ‘u:efodx:exz
b

Multiplying both sides by the integrating factor:

d
e*’ % + 2xex2y =1+ 8xe*’

dix (2xe*’y) = 1 + 8xe*’

exzy =x+4e* +¢
2
Yes = xe ¥ 4+ 4 +ce
S a ‘u:ef4xdx:e2x2
b
Multiplying both sides by the integrating factor:

_x2

d
2’ % + 4xe2*’y = 5 4+ 12xe?”

dix (e¥’y) = 5 + 12xe?*

e2’y = 5x + 3e%” 4 ¢
Ves = Sxe 2%’ 43 4 cem2x’

9 a §= ef—3x‘1 dx — g=3Inx _ (elnx)_3 —
b
Multiplying both sides by the integrating factor:
dy
-3_7 _ 3 4, = 2 -1
x i xy X

d

_ -3 — 2 -1
= (ty) = 2x
x3y =2In|x| +c
Ves = 2x3In|x| + cx3
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10 a p= ef2x™tdx — g2Inx _— (elnx)2 = x2 2
b 9o
Multiplying both sides by the integrating factor: %
d )
2y 2xy = 12x3 °
dx £
% (v7y) = 1207 S
I Y) =12x 2
x?y =3x*+¢

Yes = 3x% + cx7?

y(1) =5=34+c=>c=2
yps = 3x2 + 2x72

11

©= efsinxdx — g—cosx

Multiplying both sides by the integrating factor:

e‘cosx—y +sinxe” ¥y =2
q X
( —COSsX ) — 2
dx
e”ry =2x+c
Yes = (2x + c)e®*s”
12
§= el 10xdx — o5x7

Multiplying both sides by the integrating factor:

d
%t _dic] + 10xe5*°y = 3
d
dx (Gszy) =3

5x2

e¥'y=3x+c

Ves = (3x + ¢)e**
y(0)=4=c

yps = (3x + 4)e~5%’

13
U= efxtdx — olnx —
b)
Multiplying both sides by the integrating factor:
dy
— 4y =
xd L TY=x
— () =x
xy=—-x"t+c¢
Yes = —x % +cx

-2

-2

-1
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14 a ‘u=eftanxdx=elnsecx=secx
b
Multiplying both sides by the integrating factor:

dy )
secxa+ secxtanxy = sec” x

d
o (secxy) = sec?x

secxy =tanx +c¢
Yes = Sinx + ¢ cos x

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

15 a = ef—Ztanxdx = e—2Insecx _ (elnsecx)_2 — (secx)‘z = cos? x
b
Multiplying both sides by the integrating factor:

d
coszx%— 2sinxcosxy =1
d
a(coszxy) =1

cos’xy=x+c
yes = (x + ¢)sec?x

) =0-Gro)2

c=4-——

4
T
= _= 2
YPs—(x+4 4)sec x
16 a ‘u=efcosxdx — esinx
b

Multiplying both sides by the integrating factor:

o dy .
eS"¥ — 4 eSM¥cosxy =e

sinx
COS X

dx
e (esinxv) — esinx COS X
esmxy — esmx + C
Yes = 1+ ce™ 5%

-1
17 a po=elxhdx = glnx — o
b

Multiplying both sides by the integrating factor:
x dy +y=x"1
ddx Y
— ) =%
xy =In|x| +¢
B In|x| + ¢
Yes = .
yH=2=c
In|x| + 2
X

1

Vps =
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18 e
©= ef(x+2)‘1 dx — oln(x+2) — +2 [e)
Multiplying both sides by the integrating factor: %
d
(x+2)£+y=x2+x—2 g
d , £
a((x+2)y)=x +x—2 ;o
1 1, 2x3 +3x%2—12x+¢
(x+2)y=§x3+§x —2x+k= e
_2x*+3x?—12x+c
Yes = 6(x +2)
19

2x
‘u_ = efmdx = eln(x2+1) = xz + 1
Multiplying both sides by the integrating factor:

d
(x? + 1)d—z+2xy = 2x3 + 2x

d
&((x2 +1)y) = 2x3 + 2x

4 2
(x2+1)y=%x4+x2+k=¢
xt+2x%+¢
yGS=W
y(0)=0=>
x* + 2x?
)’ps=m
20
dy

—+2x7'y =4x7!
dx X 7y X

©= ef2x7tdx — g2Inx — (elnx)2 = x2
Muclltiplying both sides by the integrating factor:
x? % + 2xy = 4x

d

e (x%y) = 4x

x?y =2x%+¢

Ves = 2 + cx™?

21

Tip: If you do not recognise that the equation already has a perfect derivative on the left side,
rearrange and find the integrating factor in the normal way. If you do observe this fact, you can
integrate immediately but be clear about your reasoning.
dy N y  6bx

x (x—-1) (x—-1)

§= ef(x—l)‘1 dx — gln(x-1) — , _ 1
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Multiplying both sides by the integrating factor: o
dy 9o

(x—-1) e +y =6x =

d @

a((x —1y) = 6x 5

(x—1y=3x*+c x
_3x*+c ;°

Yes = —1

22

©= ef “tanxdx — gln(cosx) — gy

Multiplying both sides by the integrating factor:

dy 5
COSX————SInxYy = CoOS™ X
dx

d 1
—(cosxy) = cos?x = E(cos 2x + 1)

dx

—1'2+1+—1' +1+
cosxy1—4sm x1 2x c—zsmxcosx Zx c
yGS=Esinx+<§x+c)secx

23
Left side is a perfect derivative

d

2 — aX
X =e
xly=e*+c¢

e*+c¢
Yes = 2
y()=0=e+c=>c=—e

e¥ —e
Yps = 2

el —e
Then y(2) =
4

24

dy
F 2tanxy = 3secx
©= ef —2tanxdx — o2In(cosx) — g2 y

Multiplying both sides by the integrating factor:

2 4y .
cos xd——Zsmxcosxy = 3cosx
x

d
o (cos?xy) =3 cosx

cos?xy =3sinx+c
Yes = (3sinx + ¢) sec’ x
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25

dy
a+ cotxy=1
U= efcotxdx = elnsinx — gjp

Multiplying both sides by the integrating factor:

. y .
sinx——+ cosxy = sinx
dx

)
c
9o
whd
=
(e)
o
o
)
X
[
=

d
— (sinxy) = sinx

dx
sinxy =—cosx+¢c¢
Ygs = —cotx + ccosecx
T
y(Z)=1=—1+C\/§=>c=\/§
yps = V2 cosecx — cotx
26
dy 2 x?

dx xy x—3
p= ef —2x7tdx — g-2lnx _ ,-2

Multiplying both sides by the integrating factor:

x2y=Inlx—-3|+c
Yes = x*(In|x = 3| +¢)

27
dy

—+tanxy = cosx
dx Y

§= eftanxdx — glnsecx — gacy

Multiplying both sides by the integrating factor:

d
a(secxy) =1

secxy=x+c
Yes = cosx (x + ¢)
y(0)=2=c

Yps = (x + 2) cosx

‘ HODDER Mathematics for the IB Diploma: Analysis and approaches HL 24
7 EDUCATION © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

LEARN MORE



28

dy 2 1
-t Y -
dx (x—x71) (x—x1)
dy 2x x

MR M2y
2
U= ef(xzfl)d = eln(xz—l) =x2-1
Multiplying both sides by the integrating factor:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

d
(xz—l)%+2xy=x

d
a((x2 - 1)y) =x

1 x?+c
2_1 — 42 —
(x )y Zx +k 5
x*+c
Yes = 2(.7(2 )
29 a —+2v=10
dt
ai
‘u:efzdt:eZt

Multiplying both sides by the integrating factor:

dv
e?t — 4 2e%ty = 10e?t
dt

%(e”v) = 10e?t

e?fv =5e?t + ¢

vgs =5 +ce %t
v(0)=vy=5+c=>c=vy—-5
vps =5+ (vy — 5)e™%t

aii v—>5ast—>oo

b —+— =10
t+1

bi

§= ef(t+1)‘1 dt — gln(t+1) — ¢ 4 q
Multiplying both sides by the integrating factor:

dv
(t+1)a+v= 10(t+ 1)

%((t +1Dv) =10(t+ 1)
t+1Dv=5t+1?*+c
Vs = 5(t+1)+tL

+1
v(0)=vy=5+c=>c=v,—5
(vo—5)
=5t+1)+—=
Ups t+1)+ T 1
bii Then

—— =5_—

de (t+1)?
dv

So ——>5ast > o

dt

Long term acceleration is 5 m s 2
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30 a o
Using product rule: ()
d 22 2 2, 4y 3
dx(xy)—ny +2xydx o
b) o
dy +y 1 k-
dx xy ;o

Multiplylng both sides by 2x2y:
2xy? + 2x? dy = 2x
y ydx
= (x2y) = 2x
dx
x’y?=x%+c

y2=1+cx?
=y1+cx2or—+1+cx?
31 a
dy
3xy?—+y3 =¢*
Yy dx y
Letz = y3
dz dy
Then— = 3y?— and z = y3
dx Y dx y
dz N .
x—+z=e
dx
b
Left side is a perfect derivative
d
—(xz) = €*
€20
xz=¢e*+c
e*+c
VA =
GS X
3le¥ + ¢
y=Vzsoyg = I
X
32 a
dy y*
———=x
dx «x
Let dz ) dy
etz=y“so—=
VIS0 = Wy
Substituting:
dz 1
———z=x?
dx x
‘ HODDER Mathematics for the IB Diploma: Analysis and approaches HL 26
7 EDUCATION © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

LEARN MORE



b g
‘u=e—fx‘1dx=e—lnx=x—1 g
Multiplying both sides by the integrating factor: =
x~1 dz _ x?z=x s

dx =
e (x'2)=x ;o
-1, — .2
X "z zx +c

1 s
ZGS == Ex + cx
y =z

1 1
Ves = /§x3+cx or — ’§x3+cx

y(2) = =2 = —V4 + 2c¢ (using the negative root) = ¢ = 0

x3
Yps = — >
33
dy x*+y?
dx  2xy
dy 1 du
Let \/_so ——— andy?=u
y= = omdx Y
1 du_(x +u)
2vudx  2xVu
du 2 4
_=u=x+x_1u
dx X
du
e x lu=x

p= e~ JxThdx — g-Inx — ,-1
Multiplying both sides by the integrating factor:

x‘ld—u—x 2u=1
q dx

21y =
dx(x u)=1

xlu=x+c
Ugs = X2 + cx

Yes = VX% +cx

34 a
dy . )
cosyd— +tanxsiny = 2cos“ x
X
Let i dz dy
etZ=sImny so— = CoSy—
o Y 50 4x Y dx
Substituting:
z 2
—+tanxz = 2cos“x
dx
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b
§= eftanxdx — elnsecx — gacy

Multiplying both sides by the integrating factor:

dz
secxd—+ secxtanxz = 2cosx
x

d
—(secxz) =2cosx

dx
secxz = 2sinx +c

Zgs = 2sinx cosx + ccosx = sin2x + c cos x

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

z =siny
sin2x —siny = —ccosx

m\ T
v(3)=3

1 c 1

1_§=_ﬁ soc=—ﬁ
Then sin2x — siny = \/Z—Ecosx
35 a
d?y 1dy
dx?  xdx

dy dz dy+ d?y
dx dx dx xdxz

- dzy_ (dz dy) (dz 1 )
en dx? dx dx dx xZ
Substituting:
1<dz 1 ) 1 _
dx xZ xzz x
dz 2
dx xz—x
b

§= el —2x7tdx — g-2Inx _ ,-2
Multiplying both sides by the integrating factor:

dz
xd_za —2x73z=1
a(x‘zz) =1

x%z=x+c
Zgs = x° + cx?

c
d
X=X = %3 +cx
dx

=x% +cx
dx

1.1 ,
Yes = 3% +§cx +d
Since half an unknown constant is still an unknown constant, relabelling:

2

1
Yes =§x3 +éx*+d
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36 L4pp=qet e
de o)
=
. S
ai -
‘u_ — efﬁ dt — eﬁt _g
Multiplying both sides by the integrating factor: E
dpP =
Bt __ 4 BePtp = geB-1t o
ed I Pe ae =
a (eBtP) = ae(.B_Y)t
eftp = et 4 ¢
a
Pis = = eVt + ce Pt

P(0)=O=L+c=>c=— “
B-vr B-vr

a
PPS = e_yt — e_ﬁt
ﬁ—y( )
aii
Stationary point where
_ ﬁp .
—=ae V" — =
dt
ae ¥t = eVt — et
ﬁ y P )
(B—p)e" = e — pe
ye vt = Be Bt
e(ﬁ_y)t — E
1 Y B
t=-—m(")
B-v \v
aiii
P
7= 1n(8)
|
-
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b i—: + P = ae Pt
‘u_ — efﬁ dt — eﬁt
Multiplying both sides by the integrating factor:

dpP
eft — + peftP =qa

q dt
a(eBtP) =q
ePtP = at + ¢

Pgs = (at +c)e Pt
P(0)=0=coc=0
Pps = ate Bt

d[Bi]

37 >

= —k,[Bi]

a
Separating variables:

1
fﬁ d[Bl] —f—kl dt
In[Bi] = —k;t+ ¢
[Bi] = Ae k1t
[Bi](0) = [Bi]o = 4
[Bi] = [Bi]ge "¢

b
The rate of change in amount of Polonium is the resultant of the rate of gain due to
decay of Bismuth and the rate of loss due to decay of Polonium.

C
dPo] _ k1[Bi] — k,[Po] = k4[Bi]oe ¥t — k,[Po]
d&’to]
5+ kelPol = K [Bi]oe™*

This is a linear differential equation for [Po].
U= el kzdt — kot
Multiplying both sides by the integrating factor:

¢ dlPo
[d ]+k2ek2t[Po] kq[Bi]elk2 kot

d
37 (¢ [Po]) = Ky [BiJ ettt

ek2t[Po] = k2 — k1 [Bi],etk2—kt 4 ¢
[Polss = k1 [Bi]ge k1t + ce Kzt
[Po](0) =0=c+ g k1 [Bilo = ¢ = o k1 [Bilo
[Po]ps = k1 [Bi]y(e~*1t — e~k2t)
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c
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=
=
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(7]
©
()
=
[
S




d
Since the total concentration [Bi] + [Po] + [Pb] must always equal the initial
concentration [Bi],,
[Pb] = [Bi]o — [Bi] — [Po]

= [Bi]y — [Bi]oe "1t — L [Bi]o(e7¥1t — ekzt)

ko =y

k, X kq )
= i —_— 1t —_— —kzt
[Bi], (1 - e pa— e

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

e
Ast — oo, [Pb] — [Bi],
This is to say, in the long term, all the Bismuth will decay down to lead.

Exercise 11D

Tip at start of exercise: Throughout these worked solutions you will see the ‘order’ notation
O(n). This means that terms in x™ and greater powers are being discarded in the approximation,
and you may also see this notation in some past paper mark schemes.

Although this notation is not required, it is useful to be precise about exactly which terms you
are discarding, particularly when combining expansions using addition, multiplication or
division, so that you can be confident of the level of precision in your final answer, and so that
you do not leave out any necessary terms or parts of coefficients. It also allows the use of the
equals sign = instead of approximately equals ~.
12 a
f'(x) = sec?x
f"(x) = 2sec? xtanx
f""(x) = 4sec® xtan® x + 2sec* x

b
f(0)=0
£(0) = 1
f"(0) =0
fIII(O) =2

Maclaurin series:
X2 X3

f(x) = f(0) + xf'(0) + f”(O) + f”’(O) +0(x*)

1
f(x) =x+=x3+ O(x‘*)

3
c
|true value — approximate value|
Percentage error = X 100%
|true value|
= 0.849%
13 a
f(x) = secx

f'(x) = secxtanx
f'"(x) = secx tan® x + sec3 x
f"""(x) = secx tan® x + 5sec3 x tan x
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b
£(0) = 1
£'(0) = 0
£7(0) = 1
£/(0) = 0

Maclaurin series:
X2 x3

f(x) = f(0) + xf'(0) + f”(O) + f”’(O) + 0(x*)
f(x) =1+ %x + O(x“)

c
sec(0.2) =1+ % %X 0.04 = 1.02

|true value — approximate value|

Percentage error = X 100%
|true value|
= 0.0332%
14
f(x) = x cos 3x
f'(x) = —3xsin3x + cos 3x

f""(x) = —9x cos 3x — 6sin 3x
f"""(x) = 27xsin3x — 27 cos 3x

f®) (x) = 81x cos 3x + 108 sin 3x
£(3) (x) = —243x sin 3x + 405 cos 3x
f(0)=0

f'(0)=1

£(0) = 0

£'(0) = —27

f®0)=0

£)(0) = 405

Maclaurin series:

X2 X3
f(x) = £f(0) + xf'(0) + f”(O) + f”’(O) +—f<4>(0) +—f<5>(0) + 0(x%)
27 405
_z7 kg 6
f(x) = x 96 x3 +2%20x + 0(x )
f(x) =x —§x3 +?x + 0(x®)

15 a
In(1—x) =(—x) + % (—x)? + %(—x)3 +0(x%)

1 1
L a2 _ .3 4
x+2x 3x + 0(x*)
b
Whenxzio:
1 1 1
In(09)~ - —+————

10 200 3000
—-300+15—-1 143

3000 1500
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16 a

f(x) = In(e + x)
f'(x) =(e +x)7 !
f"(x) = —(e + x)~2
f"(x) = 2(e + x)73

f(0)=1
f'(0) =et
f’l(o) - —p—
£7'(0) = 273

Maclaurin series:
x2 X3

f(x) = f(0) + xf'(0) + f”(o) + f”’(O) + 0(x*)

1 1 1

fx)=1+- x—gx +3 x +0(x4)

b
In1+e)=1+ 11 + !
" = e 2e? 3ed

6e3 + 6e? — 3e + 2
- 6e3
c
|true value — approximate value|
Percentage error = X 100%
|true value|
= 0.27%
17
f(x) =In(1 + x + x?)
£/(x) = 1+ 2x
Y T a2
f”()_2(1+x+xz)—(1+2x)2 1—2x — 2x? 3 2
= (1+x + x2)? (14 x + x2)? (1+x+xz)2 1+x+x2
£ (x) = 6(1+ 2x) 2(1 + 2x)
X = A+x+x2)3 (1+x+x2)?

f(0) =0
f'(0)=1
f"(0) =1
fIII(O) —

Maclaurin series:
x2 X3

f(x) = f(0) + xf'(0) + f”(o) + f”’(O) + 0(x*)

1 2
f(x) =x +§x —§x + 0(x*)
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6

18

f(x) = (1 + x) sin 2x

f'(x) = sin 2x + 2(1 + x) cos 2x

f"(x) = 4cos2x — 4(1 + x) sin 2x
f"""(x) = —12sin 2x — 8(1 + x) cos 2x
f®(x) = =32 cos 2x + 16(1 + x) sin 2x

f(0) =0

f'(0) = 2
f7(0) =4
£(0) = —8
f®(0) = —32

Maclaurin series:
X2 x3

f(x) = £f(0) + xf'(0) + ~£(0) + f”’(O) + —f<4>(0) +0(x5)

4 "4
f(x) = 2x + 2x? —§x —3¥ +0(x5)

19 Tip: For a question of this sort you can either use the standard known
Maclaurin series for e* and multiply by the polynomial, or you can use differentiation and
calculate coefficients that way. The choice is really a matter of convenience unless the question
specifies. The second method is shown here.

a
f(x) = (1 +x + x?)e*
f'(x) = (2 + 3x + x?)e*
f""(x) = (5 + 5x + x%)e*
f(x) = (10 + 7x + x%)e*

£(0) = 1
f'(0) =2
£7(0) =5
£7(0) = 10

Maclaurin series:
X2 X3

f(x) = f(0) + xf'(0) + -£(0) + f”’(O) +0(x*)

f(x) =1+ 2x +;x +§x + O(x‘*)
b
f(x) = eXxtx?
f'(x) = (1 + 2x)eX**’
() = (2 + (1 + 2%)(1 + 2x))e**** = (3 + 4x + 4x2)e*+*
£ (x) = (4 +8x + (3 + 4x + 4x3)(1 + 2x))e**** = (7 + 0(x) )e¥***
£(0) = 1

f'(0)=1
f'(0) =3
fIII(O) =7

Maclaurin series:
X2 X3

f(x) = f(0) + xf'(0) + f”(O) + f”’(O) +0(x*)

3 7
fx) =1+x+-x*+=x3 +0(x4)

2 6
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Tip: The alternative option here would be to substitute into the known expansion for e*.

Using the O0(x™) notation, we can avoid unnecessary calculation of irrelevant terms. Anything
that would result in a power of x greater than 3 can simply be ignored, captured by 0 (x*):

1 1
et = 1+ (x +x2) +5 O+ + 2+ 2% + 00"

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1 1
=1+x+x2+5x2+x3+5x3+0(x4)

3 7
=1+x+—x2+gx3+0(x4)

2
20
f(x) = vcosx
£ () 1 sinx
xX)=—=
2+/cos x
1 % sin? x
5 cos x+/cosx — Jeoss
£ —
&) Ccos X
f(0)=1
£7(0) =0
1
fll(o) —

2

Maclaurin series:
X2

f(x) = f(0) + xf'(0) + f”(O) + 0(x?)

fx)=1- %xz + 0(x3)

21 a
X2 3
Maclaurin series for f(x) = In(1 + x) isf(x) = x — > + 3 + 0(x%)
9
So Maclaurin series for g(x) = In(1 — 3x) is g(x) = —3x — Exz —9x3 +0(x%)
b

In(1 — 3x) 3
T - 2T0®
So 1 In(1 — 3x) 3

O3 2x 2
22
Maclaurin series for f(x) = sin 2x is

2x)3
2x — ( 3') + 0(x®)
sin 2x

Then =2-0(x?

. sin2x
lim =
x->0 X
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23 a

f(x) = tanx

f'(x) = sec?x

f""(x) = 2sec? xtanx

f"""(x) = 4sec’? xtanx + 2 sec* x

f®(x) = 8sec?tanx + 8sec? tan x

f®)(x) = 16 sec?tanx + 8sec* x + 32 sec* tanx + 8sec® x

f(0) =0
f'(0) =1
f7(0)=0
£'(0) = 2
f®0)=0
£ (0) = 16

Maclaurin series:
X2 X3

f(x) = £f(0) + xf'(0) + f”(O) + f”’(O) + —f<4>(0) + —f<5>(0) +0(x%)

f(x) = +1 +2 +0( ©)
xX)=x 3x 15x X
b
1 1 1
X =1 a2 .3 L4 5
+x+2x +6x +24x + 0(x>)
Xt 1+ +1 +1 +1 + 0(x®) +1 +2 + 0(x®)
nx = — —
e*tanx X 2x 6x 24x X X 3x 15x X
1 1 1 1
— 24 (= 3 5
X +x +g2+3)1x +(6+3>x + 0(x>)
=x+x2+€x3+§x4+0(x5)
24 a
) 1
smx=x—€x3+0(x5)
1
cosx =1 —Exz + 0(x*)
) 1 1
sinx cosx = x—6x3+0(x5) 1—5x2+0(x4)
1 1
— 3(__-_ 2 5
x+32c( > 6)+0(x)
=x—§x3+0(x5)
b
sinx cosx = Esin 2x
1 1
=2 [(Zx) I 0(x5)]
1 4
= — —y3 5
2[29; 3% + 0(x )]
=x—§x3+0(x5)
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(72)
c
9o
=
=
(e)
(7]
©
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=
[
S




25 a

1+x 1
In =—(In(1+x)—In(1-x))
1—-x 2

2 2 3 4

(72)
c
9o
=
=
o
(7]
©
()
=
[
S

= l(x — 1x2 + 1x3 — 1x4 — ((—x) — %(—x)2 +%(—x)3 —%(—x)“)
+ 0(x5)>

1 2
— 3 5
—2<2x+3x + 0(x ))

1
=x+= 3% 3+0(x>)

,1+ ’
Whenx— X =+9=3

Substltutlng

In3 ~ 4+1( )
ne~eT3\125

Tip: This is not a unique, or even a very good, approximation; the smaller the value of x, the

. . . ,1 1
more accurate the truncated series will be. x = 0.5 gives In ﬁ =InvV3 = Eln 3.

Thenln3 = 2( 214) 12

This is a more accurate approximation (1.3% error instead of 11.6%).

As long as you give clear justification for your decision, any relevant and useful answer will be
acceptable.

26 a
1
sin2x = (2x) — E(Zx)3 +0(x>)

4
= 2x —§x3 + 0(x%)
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27 a
f(x) = arcsinx
1
f'(x) = =(1-—x?)705
W=

f”(x) — x(1 _ x2)—1.5

f”’(x) — (1 _ x2)—1.5 + 3x2(1 _ x2)—2.5
b

f(0)=0

f'(0) =1

f7(0)=0

fIII(O) =1

Maclaurin series:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

x2 x3
f(x) = f(0) + xf'(0) + f”(O) + f”’(O) + 0(x*)

1
f(x) =x +€x + 0(x4)
c

1
sin2x = (2x) — E(Zx)?’ +0(x>)

4
= 2x —§x3 + 0(x®)

d

sin 2x = arcsin x

4 1
2 — — 33 & 3
x93x x+6x
x~—-x3
22
3

a

In(e + x) =lne+ln(1+§)

-1+ ()36 +36) +oe

X

wil N

1 1
_ 2 3 4
1+E—FX +§x +0(X)
b
When x = e:
In2 1+1 1+1 1+5
nee= 273 6
Solne+ln2=1+§
In2 >
ne=g

Note: The convergence for the series of In (1 + g) is only valid for —e < x < e so we are

approximating at the boundary of convergence.
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29 a g
2 1 (®)
e =14+ (—x*)+ E(—xz) + 0(x®) =
1 ©
=1—x2+§x4+0(x6) g
b <
1 o
f ™ dx~[x——x +—x] =
0
23
730
c
|true value — approximate value|
Percentage error = x 100%
|true value|
= 2.66%
d
0,1 1 1 0.1
-2 dx ~ [ a3 5]
fo e X~ X=X + o~ .
29903
7300000
|true value — approximate value|
Percentage error = X 100%
|true value|
= 0.009%

The accuracy is far greater for the smaller value of x.

30 a

f(x) =e*tanx

f'(x) = e *(sec? x — tanx)

f""(x) = e*(2sec®? xtanx — 2sec? x + tanx)

f"""(x) = e *(4sec? xtan® x + 2 sec* x — 6sec®? xtanx + 3 sec? x — tanx)
f(0)=0

£(0) = 1

fll(o) - _

fIII(O) =5

Maclaurin series:
x2 X3

f(x) = f(0) + xf'(0) + f”(o) + f”’(O) + 0(x*)

5
f(x) = x — x? +gx +0(x4)

b
fl-xt dem bzt 5 !
e anxdx = |-x° ——= —x*
0 2 3% T,
3
"8
C
-X
tanx 1
—_— + 0(x
2x 2 )
So 1 Ytanx 1
o 1m— ==
x—0 2x 2
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31 a ")
() = s = (1 - 22)705 g

X — X 5
f/(x) — X(l _ x2)—1.5 8
f”(X) — (1 _ x2)—1.5 + 3x2(1 _ x2)—2.5 g
f(0)=1 x
£(0) =0 S
f7(0) =1

Maclaurin series:
x2

f(x) = f(0) + xf'(0) + f”(O) + 0(x3)

f(x) =1 +1x + 0(x3)

2
b
| * 1 T 1 )
arcsmxzf du=[u+—u3+0(u )] =x+-x3+0(x%
o V1 —u? 6 0 6
c
Letx=%
) (1)_71’ 1+ 1 25
AN Z) T 672748 18
g 25
0T & —
32 a

Maclaurin series for e™2%:
= 14 (-20) 45 (<2007 + 5 (207 + 00
=1-—2x+ 2x? —%xg' + 0(x*)
So
(1+x)e ?*=(1+x) (1 —2x + 2x?% — §x3 + 0(x4)>
= 1—x+§x3 + 0(x*)
b

1 1 1 1
f (1+x)e ¥ dx = [x —=x%+ —x“]
. 2° T8,

2
K
33 a
xcosx =x(1-— lx2 +ix4 + 0(x®)
2 24
1 1
=x—zx3+—x>+ 0’
2 24 )
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b e
Lot L sy oan) 2
sinx = x 6x 11201x X %
sinx — x cosx
L .2 4 )
s 3 30" + 0(x*) e
. sinx —xcosx 1 2
— —
xl—I;% x3 3 é
34
1 1 1 1
—ciny = — |y —Z 43 1= 5 7 2.3 7
x—sinx =x <x e X +120x + 0(x )) 6x 20" >+0(x7)
f(x) = tanx

f'(x) = sec?x
f"(x) = 2sec?xtanx
f""(x) = 2sec* x + 4sec? x tan? x

£(0) = 0
£7(0) = 1
£(0) = 0
£7(0) = 2

Maclaurin series:
X2 x3

f(x) = f(0) + xf'(0) + f”(O) + f”’(O) + 0(x*)

f(x) =x +%x + 0(x4)

1
X —tanx = —§x3 +0(x*)
1 1
x —sinx 6x3+0(x5) g"‘o(xz) 1+ 0(x?)
0 = = =
x —tanx _%x3+0(x4) —%"'O(X) —2+0(X)

. x—sinx 1
lim———=——~
x-0x — tanx 2
35 a
2 2 1 2y2 1 233 1 2 1
In(1+x2) = (x )—E(x ) +§(x ) —Z(x )* + 0(x1)
1 1 1
— a2 a4 .6 __ .8 10
x 2x +3x 4x + 0(x'°)
b
1 1 1 1
— -1 — 24 4 6 a2 6
1—cosx=1 (1 > X +24x +0(x)) 2x 24x + 0(x°)
In(1+x%)  x*+0(x*) 2+0(x?)
1—cosx %xz +0(xh) 1+ 0(x2)
In(1 + x?)
m-————-=
x-0 1 —cosx
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36
Using standard Maclaurin series:

1 1
e ¥=1-—x +§x2 —gx3 + 0(x*)

Using binomial expansion:

(22 ., (D)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1
—-0.5 _ _ 3 4
(1+x) =1 %x+3 2'5 x° + T x>+ 0(x*)
__ - 4
=1 2x+8x 16x +0(x*)
1 1 1 3 5
-x -05 _ (1 _ 2.2 _ .3 4 _ - _2 4
e *(1+x) —(1 x+2x o X + 0(x ))(1 2x+8x 16x + 0(x ))
1 1 1 3
=1 -1 —-—-= 3
+x( 2) <2+2+8)+0“)
=1 = 2+ 0(x%)
= SXtgx X
37 a
1 1
In(1+x)=x—=x2+=x3+0(x*)

2 3
X
ln(2+x)=1n2+ln(1+§)

1 1
= _ 4
1n2+2 8x +24x + 0(x*)

b
In[(2+x)?2(1 —x)3]=2In(2 +x) +3In(1 —x)

1 1 1 1 1
=2(ln2+2x——x +—x )+3(—x—§x2——x3)

8 24 3
+ 0(x*)
=2n2-2 7 1 +0(x*
n X 4x 12x %)
38 a
xsinx = x x—lx3+ix5+0(x7)
6 120
1 1
2 _ 1.4, T 6 8
Xt —ox +120x + 0(x®)
b

1 1_x—sinx
sinx x  xsinx )
6x3—mx5+0(x7)
xz—%x4+
x + 0(x?)

~6+0x2)

1 1
lim< — — —) =0
x-0\sinx x

%xﬁ + 0(x8)
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39 a
xIn(1+x) =x x—1x2+1x3—1x4+0(x5)
2 3 4
1 1 1
_.2_-.3,% 4_ 1 5 6
=x zx +3x 4x +0(X)
b
1 1 x—In(1+x)
In1+x) x xIn(1+x)
%x2+0(x3)
X2+ 0(x3)
_1+0(Y)
24+ 0(x)
y ( 1 1)_1
#30 In(1+x) x/ 2
40 a
2x=ex1n2
b
1
2"=1+(xln2)+§(xln2)2+0(x3)
In 2)?
=1+ (n2)x +%x2 + 0(x3)
c

2*—1 _ (In2)x +0(x?)

3* =1 (In3)x + 0(x?)
In2 +0(x1)

“In3+o0@k))

Loy 2
) <3x _ 1) “In3_ 983

41 a
f(x) = In(e* cos x)
d  x :
I (e*cosx)  e*(cosx — sinx)

f'(x) = = =1—tanx
e* cosx eX cosx

f""(x) = —sec?x

f'"(x) = —2sec®? xtanx

f®(x) = —4sec?xtan®x — 2sect x
b)

f(0)=0

£(0) = 1

f”(O) - _

f///(O) =0

f®0) = -2
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




Maclaurin series:
X2 3

f(x) = £f(0) + xf'(0) + f”(O) + f”’(O) + —f<4>(0) +0(x5)

f(x)—x—lx —ix +0(x5)

2 12
1
x—31n((1 +x) te* cosx) = x_3 [—In(1 4+ x) + In(e* cos x)]
R [ S S SN S 1, 1, 5
—x3(x+2x 3x +4x)+<x o 12x)+0(x)]
— Ly +0(x?)
=—gtgx x
i 11 (excosx)_ 1
xl—r}(leg'n 1+x /3
42 a
sinx=x—lx3+ix5+0(x7)
6 120
b
1 1 1
Substituting into e® —1+a+2a +6a +ﬁa + 0(a®):
e 1 (x-2a0) 4 (e - L) w2 (xm L) L (v - 1) w0
e = X=X A clx—gx Sa\X T gX X
=1+ +1 2+ ( 1+1)+ ( 1+1)+0( *)
AT T T ) T e 24 x
=1+x+1x2—1x4+0(x5)
2 8
43 ai
1 1 1 1
In(1 — a2 3 .4 .5 6
n(l+x)=x 2x +3x 4x +5x + 0(x®)
aii
3 5
— o - 7
arctanx = x 3+5+0(Jc)
b

arctan(In(1 + x))

1 1 1 1 1 1 1 .\ 1
(203 _ 04y -5\ _Zf(y__,242,3 2 ()5
(x > X +3x 2x +5x) 3<x =X +3x)+5(x)
+ 0(x°)
Coefficient of
xl:1
1
2. __
x .1 21
3.~ —
x 373
.. 1+3( 1)( 1)_ 1+1_1
Ty 3)\72) T 74727,
5.1, ( 1)( 1)2+3( 1)(1 L1 11 1.1 11
X 3\2) T3 TS5 a3 T 6o
= 2 4t 5 6
arctan(In(1 + x)) = x > +4x 60x + 0(x®)
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(72)
c
9o
=
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(e)
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="

44 a (2n+1)!
=nr
b (2n+1)!
C

="
(2n)!

The coefficient of x2" in the series for cos x is

2n __ ( 1)11
L Zn+ 1) T e

o-l-@n+D

_; R x?
- 2n

=;_(2n+1)!(_1) x*

2n
— 0 —1 n-1 2n
0x +Z( A T Tk
n=

- 2n
— —1 n-1__~ "  .2n
Z( A T T
n=1 1
45 a e* =)o Ex“

Substltutlng

ez:c2 — Z —(2x2)" Z

n:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

[ee]
sinx (="
—Ccosx =

The coefficient of x2" 1s —

n!
b
. on : .l
The coefficient of x“™ in the expansion of 2 cos x is 2 2!
. . 2n : . 2 2 . Zn (_1)71
The coefficient of x“™ in the expansion of e“* — 2 cos x is — —
n! (2n)!
(_1)n+1 +
46 a — forn € Z
b
1+x
ln(l—x) =In(1+x)—In(1—x)
hod —1 n+1 -1 n+1
:Z(( LD (_x)n>
n n
n°=01
—1 n+1 1
=Z(—( ) x"+—x">
n n
n=1
2
= z —xn
n
ogod n
— Z 2n+1
2n+1
n=0
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47

Maclaurin series:
2

f(x) = f(0) + xf'(0) + f”(O) + 0(x3)
x 3x?
_p_ T2 3
3 4-1I- 5 + 0(x>)
Sof'(0) = —Z,f(O) =3
The tangent at x = 0 is therefore

1
y=3=-7(-0)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

= oxt3

48

Maclaurin series:
X2 x3

f(x) = f(0) + xf'(0) + f”(O) + f”’(O) +0(x*)

3
=2 — 4x? +§x +0(x4)
So f’(0) = 0, and there is therefore a stationary pointatx = 0

f(0) = 2,f"(0) = -8 < 0
Stationary point (0,2) is a local maximum.

49

Maclaurin series:
X2

f(x) = f(0) + xf'(0) + f”(O) + 0(x?)

3n+2
a2n+ D"
1 5 1
=§+ﬁx+%x +0(X3)
1
a f(O) _E

b f(0)=

50 a

f(x) = xe*

Proposition: fM(x) = (n + x)e*

Base case n = 0: fO(x) = f(x) = (0 + x)e*

Inductive step: Assume the proposition is true for integern = k > 0
So f®(x) = (k + x)e*
Working towards: f*+V(x) = (k + 1 + x)e*

d
F+D () = . [(k +x)e*] (by assumption)

= (k + x)e* + e*
=(k+1+x)e*
So the proposition is true forn = k + 1
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Conclusion:  The proposition is true for n = 0, and, if true for n = k, it is also true for
n = k + 1. Therefore, the proposition is true for all n € N by the principle of
mathematical induction.

f(0)=0
f(0)=1

f'(0) =2

f''(0) = 3
f®(0) =4
fG)(0) =5
Maclaurin series:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2 3
f(x) = £f(0) + xf'(0) + ~£(0) + f”’(O) + —f<4>(0) + —f<5>(0) +0(x%)

1 1 1
- 6
f(x) = x + x? +2x +6x +24x + 0(x°)

Exercise 10E

7

yll _ Zyl + y — O

Lety = ag + a;x + ayx? + 0(x3)

Y(O) =ay=1

yl(o) =a; = 1

y"(0) = 2a; = 2y'(0) - y(0) =1
a, = >

1
y=1 +x+§x2 +0(x?)
8 a
y"'—=3y"+2y=0
Lety = ag + a;x + a,x% + 0(x3)

y(0) =ao=1
y'(0)=a, =2
y"(0) = 2a; = 3y'(0) — 2y(0) = 4
a, =2
y=1+2x+2x%+0(x3)
b y(1) =5
9 a

Using binomial expansion:

1 1
(1+x3)°5 =1+ %(x3) + @) g, 2 (2 +0(x?)
1, 1 '
=1+ Ex?’ —§x6 +0(x?)

b
X
=j (1 +u2)% du

1 1
=c+x+sxt——x"+0x)

8 56
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C
y(0)=1=c

y(0.1) = 1+ 0.1 + 0.0000125 —
~ 1.10001

560000000

10

y"+y=0

Lety = ag + arx + a;x? + azx® + 0(x*)
y(0) =ay,=1

y’(O) =a, =2

y"(0) =4 =2a,s0a, =2

y""'(0) T 6a; = —y(0) = —1

a3=—g

1
y = 1+2x+2x2—€x3+0(x4)

11 a

y'+xy=0s0y" +xy'+y=0

Lety = ag + arx + a;x? + azx® + 0(x")
y(0) =ay,=1

y'(0)=a; =0

y"(0) =2a, =—-0xy(0)=0so0a, =0
y""(0) p 6a; = —0 x y'(0) — y(0) = —

a3 = —g
1

y=1 —€x3 +0(x*)

b y(0.5) = 0.979
12
y// + yZ — 0 SO yr// — _Zyy,
Lety = ay + a;x + a,x? + azx® + 0(x*)
y(0)=agy=1

yl(o) =a, = -1 .
y”(O) =2a, = —(y(O))Z =—-1soa, = _E
y”’(O% = 6a; = —2y(0) x y'(0) = 2

as; =—
373 ) )
y=1-x-5x*+2x>+0(x*
2 3
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(72)
c
9o
=
=
(e)
(7]
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=
[
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13
J+O?+y?=t
y+2yy+2yy=1
Lety = ag + a;t + a,t? + ast3 + 0(t*)
y(0) =ay=-2
y(0) =a; =3
2 2 13
(0) =2a; = 0= (3(0)" - (y(0))" = —13s0a, = ——
y(0) = 6a; =1 —2y(0) x (0) —2y(0) x y(0) =1+ 78 + 12 =91
91

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

a3=_

6
13 91
y=—-2+ 3t—7t2 +?t3 +0(t*)
14 a
o 1
o=
=0
b
d
—y=xe"

dx -
y=c+2—1 xk+2
P (k+2)xk!

c
y(0)=c=1

1 1
y=1 +§x2 +§x3 + 0(x*)
y(0.5) = 1.17

15

y' +e¥ =cosx

y"' +e¥y' = —sinx

Lety = ag + a;x + ayx? + azx3 + 0(x*)
y(0)=ao=1

y'(0) = a; = cos(0) —e¥® =1 —¢

1
y"(0) = 2a, = —sin(0) —e?@y'(0) =0—e(1—e€)soa, = E(e2 —e)

1
y = 1+(1—e)x+E(e2—e)x2+0(x3)
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16 a
y'—4y' +4y =0

Lety = Z agx®
k=0

Theny' = Z(k + Dag,x*
k=0

andy’ = Z(k + 1) (k + 2)ay,,x*

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Substituting the general coefficient for x* into the differential equation:
(k+1)(k+2)ag,, —4(k +1ay,q, +4a, =0foreveryk =0

_ 4‘(k + 1)ak+1 - 4ak
A ) T

2k+1 k+1 2k

If Zaxk—Z—thena =0,a, =—— fork>1
y = k 4 k! 0 k (k _ 1)|
Using the iteration from parta: a, = @ =4
n

Proposition: a, = (n2—1)' forn>1

1
Base case n = 1: a1=2=2—

0!

2
Base case n = 2: a2=4=21—'
Inductive step: Assume the proposition is true for integer n = k — 1 and
n=k>2

ok-1 ok
Soag_, = o and q; = =
2k+1

Working towards. a, ., =
4ka;, — 4a;_4

B = T+ D
k X 2k+2 _ (k _ 1)2k+1

T k(e+ Dk — D!

k!

(by assumption and iteration)

2k+1
=——0(2k—- (k-1
o (2 = D)
_ 2Kk + 1)
T (k+1)!
2k+1
k!
So the proposition is true forn = k + 1
Conclus The proposition is true for n = 1, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical
induction.
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6

17 a
y'—xy' —y=0

Lety = Z agx®

Theny' = Z(k + Dag,x¥soxy’ = Z ka,x*
k=0 k=1

andy'" = Z(k + 1D (k + 2)ay,.x*

Substituting the general coefficient for x* into the differential equation:

(k+ 1)(k +2)ag,, — kay, —a, = 0foreveryk >0

A2 = (k + 2)

y(0) =ao=1

y'(0)=a; =0

Then by the iterative formula, all odd coefficients will equal zero.
_ Qk-1)

a2k - Zk

Considering instead as a series of powers of x2:
[ee)

Lety = Z b, x*¥ where b, = a,,

bk1 1

b, = and by = 1so b, = >kl
Y= szk'
b
1 /x2\* =
y:ZE<7> =e?2
k=0
18

Theny' = Z(k + Dags1x¥sox?y’ = Z(k — Day_,x*

andy" = Z(k + 1) (k + 2)a, ., x*

k=0

Substituting the general coefficient for x* into the differential equation:

(k+1)(k+2)ag,, + (k—1)ag_4 +ayp_, = 0foreveryk > 2

ka1
a = -
2T k+ Dk +2)
y(0) =a,=0
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(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S




y'(0)=a, =1 2
y"(0) = 2a; = 0 S
The recurrence relation on the coefficients means that a;, = as;,, = 0 for integer k; E
only the a3, coefficients will be non-zero. o
a, = 1 ©

__ 2 g
“ =73 2

2%x5

Y I ax6x7"

2xX5%x..x(Bk—-1)
Azps1 = (=1)F

3X4X6X7X..X(Bk)x(Bk+1)
—( 1)kzz><52><...><(3k—1)2
B (3k + 1)!

= 22 x52x ..x (3k — 1)
— _1\k 3k+1
Y—HZ( D 3k + 1)! x

19
y”+xy’+y=0

Lety = Z agx®

Theny' = Z(k + Dag,x¥soxy’ = Z ka,x*

=
andy" = Z(k + 1) (k + 2)a,4x"

Substituting the general coefficient for x* into the differential equation:
(k+1)(k+2)ag,, + kay +a, =0 foreveryk >0
A

A2 = —m
y(0) = a,
y'(0) = a;

The recurrence relation links all odd coefficients in terms of a; and all even coefficients
in terms of a.
Even coefficients:

1
e

1
a“=a°<2x4)=

1 1
(7% 7)

_ Qo (-1
P2k = ok
0Odd coefficients:

1
a; = a(~3)

1 2 x 4 22 x 21
a5:a1(3x5):al( 51 >=a1 51

B ( -1 )_ (2x4><6)_ 23 x 3!
G =U\3xsx7) T T\ )T TAlT
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ay (12K
B2kt1 = T oK 1)

i GROLITIN Zc DM s
L1 2%k 2k + D™

20 a
1—x2)y" —2xy'+1(l+1)y=0

Lety = Z ax"
=0

Theny' = Z(r + Da,1x"soxy’ = Z ra,x’

r=0
(o8]

andy”’ = ) (r+ 1D+ 2)a,,x"so (1 —x2)y"”
y r+2 y

)
c
9o
whd
=
(e)
o
o
)
X
[
=

= D10+ DO +2)aysy =1 = Da,Jx"

Substituting the general coefficient for x” into the differential equation:
r+1)r+2)a,y —r(r—1a, —2ra, + (L + 1)a, = 0foreveryr =0
r+ D0 +2ar, =a(r2+r—1(1+1))
_rr+1)-1l1+1)
AR T TG S R
b

[o9)

y) =) a =1

r=0
The relationship given in part a means that when r = [, a,.,, = 0 and therefore

Ary2n = 0.
For finite series, since there is no restriction on the alternating values, the odd or even
coefficients not forced to zero by the relationship must therefore be zero throughout,

bi If | = 1 then even coefficients a,, = 0
az =0 =ay4zr
Soy =a;,x
y)=1=qa
Soy =x

bii If | = 2 then odd coefficients ay,,; = 0
as =0 =azy
Soy = ay + a,x?
y(1)=1=ay+a,
02+0-2(2+1)

a, = ap = —3a
27 0+D0+2) ° 0
a0+a2 =_2a0 =1
aQg = ——=
0 . 2
— 2
y=506x"-1)
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21 a
y' =2xy'+2ky =0

Lety = Z ax"
=0
(0]

Theny' = Z(r + Da,1x"soxy’ = Z ra,x’

r=0 r=0
(o]

and y" = Z(r + 1D)(r+2)a,;,x"

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Substitutingg the general coefficient for x™ into the differential equation:
(r+ 1)@ +2)ay,, —2ra, + 2ka, = 0foreveryr >0
r+ 1D +2)a4, =2a,.(r—k)

_ 20r—k)
2T T D+
b
y(0)=ao=0
y'(0)=a =1

a,, = 0 for all integer r because of the relationship in part a

For the solution to be a finite polynomial, it is necessary that r — k = 0 for some odd
positive integer r, so the requirement on k is that it must be a positive, odd integer.
Fork=1,a;=0soy =x

2 2
Fork = 3,a; =3 and as =OSoy=x—§x3

22 a
(1 —x2)f"(x) — xf'(x) + k?f(x) =0

Lety = Z ax"
r=0

Theny' = Z(r + Da,1x"soxy’ = Z ra,x’
r=0

=0

o)

andy"” = Z(r + D+ 2)ar4,x" s0 (1 —x)y"
r=0

= D10+ DO + 2y, =1 = Da,Jx"

Substituting the ge_neral coefficient for x” into the differential equation:
r+ 1D +2)ay, —r(r—1a, —ra, + k?a, = 0 for everyr >0
r+ D0 +2)ay,, = ar(rz — k?)

r? — k?
T e D +2)
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b
The relationship between coefficients in part a means that for positive integer k, all
coefficients ay,,, will be zero.
For a finite polynomial, if k is odd then all even coefficients a,,, must be zero and if k
is even then all odd coefficients a,,,; must be zero.
The degree of the finite polynomial will be k, since a; will be the final non-zero
coefficient.
k = 2: quadratic Chebyschev function:

4

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

T T T T

y = ao(1—2x?)

Require that the range for -1 <x <1lis—-1<y <1soqy, = %1
y = +(1—2x?)

Tip: Strictly, the Chebyschev polynomial will be the polynomial with greatest lead coefficient
to satisfy the conditions, so y = 2x? — 1 is the unique correct solution.
k = 3: cubic Chebyschev function
1-9 4
a1 = —= a1
23

3
_ ( 4 3)
y=a|x—3x

Require that the range for —-1 < x < lis—1<y<1soa; =13
y = +(3x — 4x3)

Tip: As above, y = 4x3 — 3x is the unique correct solution.

a3:

23 a
4x%y" +4xy' —y =0

Lety = Z ax"
r=0
oo

Theny' = Z(r + 1)a,;1x"soxy’ = Z ra,x"
r=0

r=0

o)

o)

and y" = Z(r + D+ 2)a,,x" sox?y" = z r(r—Da,x"
r=0

r=0
Substituting the general coefficient for x” into the differential equation:
4r(r —1)a, + 4ra, —a, = 0 foreveryr >0
(472 — Da, =0
Since 472 — 1 # 0 for any r € N, it follows that a,, = 0 for all a,..
That is, the only Maclaurin series solution is y = 0.

b
[ee]
Lety = z ax"tm
r=0
[ee]

Theny’ = Z(r + a1 x" M soxy’ = Z(r +m)a,x”

r=0 r=0
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oo oo w
andy" = Z(r + D) + 2)a, ,x" sox?y" = Z(r +m)(r+m— Da,x™*™ _5
- = =
Substituting the general coefficient for x” into the differential equation: é
4r+ m)(r+ m—1a, + 4(r + m)a, — a, = 0 foreveryr = 0 S
(4(r+m)? —1)a, =0 k-
Then a, = 0 except when (r + m)? = % ;o
1
=4—
r+ rrtl4 t5
y =—+ Bx

Vx

Mixed Practice
1 a
fy‘l dy=f3c052x dx

In|y| = 1.5 sin2x + ¢
ly| = Ael5si2¥ for A > 0

y = Ael-5sin2x
b
y(0)=5=4
y = 5el-5sin2x
2
g—z = (3x* —2)y

jy‘l dy=J3x2—2 dx

Inly| =x3-2x+c
ly| = Ae**~2X for A > 0

y = AeX’—2x
3 a
§= ef —3x%dx — o—x3
b
Multiplying both sides by the integrating factor:
d
e=x° % —3x2e*’y = 6x2e7¥’

d 3 3

—(e™y) = 6x%e7*

dfxﬁ _ _x3
y=-=2e"% +c¢

yGS=Cex3_2
y0)=1=c—-2

c=3
3
Yps = 3e* —2
4 a
_ (2% -1 1
p=e I 7 dx _ e~ In(x%+1) — oIn(x?+1) ~ — :
x-+1
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b
Multiplying both sides by the integrating factor:

d
(1+x?)71 % —2xy(1+x?)"2=1+x*"1

d 1
a(l-i}xz):1+x2

= arctanx 4+ ¢

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

1+ x?
yes = (1 + x?)(arctanx + ¢)

5

dy_ X 2

a_e -y _f(x'y)
Y1 = Yo + R X fQxn, yn)
y(0) =2,h = 0.1

From GDC: y(2) = 2.45

6
Maclaurin expansion of sin x:
1 1
sinx = x — €x3 +mx5 +0(x7)
1 1
) — (1 _ +2 _Z _ 7
Then(1 — x*)sinx = (1 — x )(x 6x +120x + 0(x ))
1 1 1
e (i) (e )+
xhx ( 6 >+x 120 "6/ 120(x )
=x——x3+ le
6 40
7 a
1
eX = 1+x+§x2+0(x3)
b
3 1
\/E = e3
()66 -5
- 3/ " \2/\3) " 18
8 a
1 1
arctanu = u — §u3 + U +0W”)
Substituting u = 2x:
8 ,, 32 ;
arctan 2x = 2x — §x + ?x +0(x")
b
8 32
2x — arctan 2x 3x3 - ?xs +0(x7)
x3 x3
8
= 5 + O(XZ)
. 2x —arctan2x 8
Hence lim 3 ==
x—0 x 3
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9 a

1
et = 1+u+§u2+0(u3)

Substituting u = x2:
e’ =14 x2 4+ 0(x%)
b
Taking the indefinite Integral twice:

1
jexz dx=c+x+§x3+0(x5)

x2 _ 1 2 i 4 6
e dx dx—d+cx+2x +12x + 0(x°)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Ify"” = e*” then

1 1
y d+cx+2x +12x + 0(x°)
10 a

d
%z cos?x —ytanx = f(x,y)

Y1 = Yn + R X f(xn, yn)
xo = O,yo = Z,h = 01
From GDC: y(0.3) = 2.23

bi
§= eftanxdx — glnsecx — gacy
bii
Multiplying both sides by the integrating factor:

dy
secxa+ysecxtanx = COS X

d
P (ysecx) =cosx

ysecx =sinx +c¢
Yes = (sinx + ¢) cosx

y(0)=2=c
Yps = (2 + sinx) cos x
11 a

fR‘ldR=f—kdt

In|R| = -kt + ¢

R = Ae7kt
R = Rye™*t
b
1 1
When R = 5 Ry, e™ =5
= 11 2
= k n
C

The time taken to halve the amount of the substance is independent of the amount at the
start; that is, half-life is independent of the amount of the substance involved.
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6

12 a Euler’s method:

y(x+h)=yx)+h xj—z(x)
y(0) = 1,h = 0.25

=
(=)

-

O~ N W R Ot - o ©
N

0 1 2 3 45 678 910"
b The minimum value of y is approximately 0.6

13 a Euler’s method:

y(x + h) =y(x)+h><j—3:(x)

y(0)=-1,h=0.1
From GDC: y(2) = —0.599
b

fe‘y dyzfe‘x dx

—eV=—e*+c
y=—In(e™ —¢)
y0)=—-1=—-In(1—-c)soc=1—¢e
y=—In(e™*+e—1)
Then y(2) = —0.617
Error = 0.0178
c Decreasing the step length is likely to decrease the error
14 a Euler’s method:

y(x + h) =y(x)+h><j—z(x)

y(0) = —-1,h = 0.05

From GDC: y(1) = —0.0392
b

©= ef—Zxdx =X

Multiplying both sides by the integrating factor:

d
e~ % —2xe 2’y =1

d

e =1
ye x+c
Yes = (x + 0)e*’

2

y(0)=-1=c
Yps = (x — 1e*’
Theny(1) =0

Error = 0.0392
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)
c
9o
whd
=
(e)
o
o
)
X
[
=




15 7}

c
d—y+ysec2x—sec2x 2
dx , S
‘u=efsec xdx — gtanx 8
Multiplying both sides by the integrating factor: =
etanxd_ + yetanx SeCZ x = etanx SeCZ x §

(yetanx) — etanx SeC x

dx

yetanx — etanx + c
Yos = 1+ ce™@n*
y(0)=3=1+c
c=2

Yps = 1 + 2e~tanx
16

Separating variables:

1 2
fy2+1dy:fx2+1dx

arctany = 2arctanx + ¢
y =0whenx =0
0=0+c=>c=0
arctany = 2 arctanx
y = tan(2 arctan x)

2 tan(arctan x)

=1 _tan? (arctan x) using double angle identity for tan

2x .
= 12 using tan(arctanx) = x
17
dy
— 4 — a2Xx
I Xy =e

L=e [—4xdx — e
Multiplying both sides by the integrating factor:

—2x2

Ves = (x + c)e?*
y(0)=4=c
yps = (x + 4)e2x2

18 a
Euler’s method:

dy
y(x +h) = y(0) +hx o ()

y(1) = 2,h = 0.1
From GDC: y(1.3) = 3.92
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b

fy‘l dy =J3x‘2 dx

Inly| = -3x"1 +¢
y = Ae 3"
y(1) =2 =Ae 3 > A = 2e
y = 2e3(1-x71)
c
So y(1.3) = 3.997

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

|estimated value — actual value|
Percentage error = X 100% = 1.90%
|actual value|

19 a
(x — 1)y’ =cos?®y
2 =
fsec y dy P

tany =In|lx — 1| + ¢
Yes = arctan(In|x — 1| + ¢)
y(0) =0 =arctan(c) > c =0
yps = arctan(In|x — 1|)

b
Euler’s method:

d
y(x +h) = y(x) + h X _y (x y(x))
cos?y
-1

y(0) =0,h = 0.1 (x y(x)) =
From GDC: y(0.5) —O 592

From part a, y(0.5) = —0.606

b . |true value — approximate value| 100%
ercentage error = X
& |true value| 0
= 2.39%

20

dN—OZN<1+2 i (T[t))

dts_ . sin 6

_[N dN=J1+251n(6) dt
12 mt

51n|N|=t——cos(Z)+c

NG.S‘ — AeO Z(t——zcos(rgt))

2.4
N(O)—Z—Ae T =>A 2em
02(t+— 1 cos )

NPS = 2e
21 a
dy
— = 2x(1+x%—
dx ( ¥)

Y
— 4+ 2xy = 2x + 2x3
dx Y
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b
©= ef2xdx — ox?
Multiplying both sides by the integrating factor:

d
e*’ % + 2xye*” = 2xe*” + 2x3e”

d
a(yexz) = 2xe*’ + 2x3e*

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

yeX’ = e** 4 f 2x3e*” dx

Letu = x2,v' = 2xe* sou’ = 2x,v = e*
Integration by parts: f uv’ dx = uv — J u'v dx
fo?’e"2 dx = x2e*’ —foe"2 dx

2 2
=x%e* —e*¥ 4 ¢

2 2
yeX” = x%e* +c¢
A2
Yes = x% +xe™*
22 a

dy y Y\?
w33 +20)
This is a homogeneous equation because the derivative can be expressed as a function
of the ratio of the variables.
b
Lety =xwsoy =xw'+w
xw' +w = 3w + 2w?
2w + 2w?

X
[ =[5
w(l+w) W_xx

2
f___dw [2a
1+w X

4

w =

1
1+w kx
w(l — kx?) = kx?
kx? x?

w =

1—kxZ A—xZ
Substituting back with y = xw
3

X
Yes = A x2
(2)=4= 8 a6
= = =
Y A—4
x3
Yps = 6 — x2
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23

1
Let f(x) = e?* and g(x) = (1 — 2x)3
Maclaurin expansion for f(x) is

(2x)* 3 2 3
f(x) =14+ 2x+ > +0(x°)=142x+2x*+0(x>)

Maclaurin expansion for g(x) is

1 3)(3) 4
glx) =1+ §(—2x) + u(—Zx)z +0(x3)=1-—=x— §x2 + 0(x3)

2! 3
Then the Maclaurin expansion for f(x)g(x) is

fx)g(x) = (14 2x + 2x2 + 0(x?)) (1 — %x - gxz + 0(x3)>

2 4 4
= 2 3
—1+(2 3)x+(2 3 9)x + 0(x>)

The term in x?2 is §x2

24
Letf(x) = (1 —x)71
Maclaurin expansion for f(x) is
fx) =1+x+x2+x3+00x*h
Letg(x) = ln(f(x))
Maclaurin expansion for g(x) is
1
g) =(x+x2+x3+00(") - E(x +x% 4+ x3 + O(Jc‘*))2
1
+ §(x +x% +x3 + O(x“))3 +0(x%)
1 1
=(x+x2+x*+0(xY) - E(x2 +2x3+00(M) + g(x3 +0(x") +0(x%)

1 1
_ 2,24 2.3 4
—x+2x +3x + 0(x*)
25
1
Let f(x) =cosxand g(x) = (1 —=x2)"2
Maclaurin expansion for f(x) is

f(x) =1 12+1 4+ 0(x®)
xX) = S X"t o x
Maclaurin expansion for g(x) is

2! 2
Then the Maclaurin expansion for f(x)g(x) is

f(x)g(x) = (1 — %x +%x + 0(x6)) (1 + %xz +gx4 + 0(x6)>
3

1 1 1
— o2 (22 4 6
—1+<4 )xl-l-(B 4+24)x + 0(x°)

Th — 4
e term in x* is 24x =z

1 (-2 (-2) 1,03
glx) =1+ (—§> (—x2) + #(—xz)z +0(x®) =1+=-x%+ §x4 + 0(x®)
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26 a
y = arcsinx

1 ( 2) 1
"= =1-x*)2
Y V1 —x?

3
Y =x(1—x2)7z

Y= (1= x?) 2+ (3x?)(1 = x?)72 = (1 + 2231 - x9) 2
b

y(0) =0

y'(0) =1

y"(0)=0

ylll(o) — 1

Maclaurin series:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2 3

y = y(0) +xy'(0) + 37" (0) + 5" (0) + 0(xH)

1
y=x+2x0+ 0
C

1
sinx = x — €x3 + 0(x>)

1

_ (arcsinx —sinx) _ |3x*+0()| 1
llm{ }=11m 2 A =-_
x—=0 x3 x—0 x3 3
27
d?y dy
dxz-: d—+xy =X

dy dy 2.
So @;x—xd——zx y

d>y d?y dy dy

Th — =1—-x—-—=-2 2_22 s

13 o Y Vi
Lety = ag + a;x + azx? + azx® + 0(x*)
y(0)=a0=2
y’(0)=a1:4

y"(0) = 2a, =0—0(4) —0(22) =0
y"(0) = 6a3 =1—0—4—2(0)(4) +2(0)(2)(4) = -3

1
Y=2+4x—§x3+0(x4)

28
d
—y=x+2—xe3’
dx , .
— 2 =1 —e¥[x=
Oz Te (xdx+1>
Lety = ag + ayx + apx? + 0(x?)
y(0)=ay=1

y'(0)=a;=0+2-0(e!) =2
y'(0) =22, =1-¢€'(0(2)+1)=1-e

1-e , 5
y=1+2x+ x“+ 0(x>)
‘ HODDER Mathematics for the IB Diploma: Analysis and approaches HL 64
7 EDUCATION © Paul Fannon, Vesna Kadelburg, Ben Woolley, Steven Ward 2020

LEARN MORE



6

29 a
[Sor=[3e
y V)
In|y| = In|x| + k = In|cx]|
y =cx

b
Lety =vxsoy =v+xv
v+xv' =v

4

xv'=0
v =0
v=c
Substituting back:
y
—=c
x
y =
c
y —xly=0

U= ef —x7tdx — g-Inx — ,-1
Multiplying both sides by the integrating factor:

x & X"y =

q dx

a(x_l)’) =

xly=c

y =cx

d)
y(2)=20=2c=>c=10
y(5) =50

30 ai

yy' = cos 2x

If y = cosx + sinx then y' = cosx — sinx
yy' = (cos x + sinx)(cos x — sinx) = cos? x — sin? x = cos 2x
(using the double angle formula for cosine)
Hence y = cos x + sin x satisfies the differential equation.
aii Separating variables:

fy dy=fc052x dx

L7 = Ssinzx +
Zy —Zsmx c

Yes = tVsin2x + ¢
aiii
(cos x + sinx)? = cos? x + sin? x + 2sinx cosx = 1 + sin 2x
Therefore for ¢ = 1, the answer to ii gives the result seen in part i, with the positive
square root.
bi

y(%)=2= sm(2)+c—\/1_+c=>6—3

Yps = Vsin2x + 3
Since sin 2x has range [—1,1], the range of g(x) is [\/Z 2]
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bii

T

Area = fzg(x) dx
0

f Vsin2x + 3 dx

= 2.99 (GDC)
biii
The volume required equals the volume of revolution of the curve about the x-axis less

the volume of a disc of radius 1 and axis length g
Tl'

V= nfiyz dx — m(1)? (g)
0

)
c
9o
whd
=
(e)
o
o
)
X
[
=

n 2

7 T
=mw| sin2x+3 dx ——

0 2

T
2

_ [3 1 2]7 T
= |3x — 5 cos xO 5
B (37r+2) w2

— T\ 2
=427

~ 13.0

31
Separating variables:

ety
1+ y2 Y= 1+ x2 x

arctany = arctanx + ¢
Using the compound angle formula for the tangent function:

_ tan(arct +)_x+tanc
y =tan(arctanx + ¢) = T————
Since tan ¢ can take any value for unknown c, we can simplify to
_x+k
Yes = 1 — kx
y(0)=1=k
_x+1
g
32 a
dy vy 1 y 1
a_(;)-l_lny—lnx_(;)-l_ln(X)
X

This is a homogeneous equation because the derivative can be expressed as a function
of the ratio of the variables.
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b
Lety =xwsothaty' = xw’'+w

1
xw' +w=w+—
1 Inw

xw' = —
Inw

Separating variables:

1
flnwdw=J—dx
X

winw —w = In|x| + ¢ = In|kx]|

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Substituting back:
y y _
~(n (;) — 1) =In|kx|
y(1) = 1impliesk = e

4 —n (%
y(In (;) —1) =xIn (e)
33 a
1+v _ 1+v _ A 4
9—v2 3B+v)3-v) 34+v 3-v
Multiplying through by the denominator of the LHS:
1+v=AB-v)+ BB +v)

-1

for some constants 4 and B

2
v=3:4=6B=>B=§
1
u=—3:—2=6,4=>,4=—§
1+v_1( 2 1 )
9—p2 3\3—v 3+4v
b

y_9x+y_9+(%)
dx  x+y _1+(%)

This is a homogeneous equation because the derivative can be expressed as a function
of the ratio of the variables.

c
Lety = xwso thaty’ = xw’' +w

- 1+w

J'1+Wd _J’ld
9 — w2 W= x x

Using part a to split the left integrand into partial fractions:
1 2 1

§f(3—w_3+w) dw = Inlx] + ¢

—2In|3 —w| —1In|3 + w| = 31n|x| + ¢ = In|Ax3|
In|[Ax3(3 —w)?(3+w)| =0

Ax3(3-w)?B+w) =1
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Substituting back to y:
2

3(o_ 7Y Y\ _
Ax (3 x) (3+x)_ 1
(Bx—y)*’Bx+y)=A4"
Bx—y)Bx—-y)Bx+y)=A""
(Bx —y)(9x* —y*) = A7!
Therefore, (3x — y)(9x% — y?) is a constant in any solution.
34
Letz=2x—3ysoz =2—-3y'
2-2)
3

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

Then y' =

Substituting:
(z+3)2-2")

+1

3
2(z+3)—(z+3)z’  =3z+3
(z+3)z27=3—-z

zZ+ 3
f dz=f1dx
3—2z

6
f —1dz=J1dx
3—z

—6In|3—z|—z=x+c¢
Whenx =1,y=1andz = -1
—6ln4+1=14+c=>c=-6In4

z—3
—61n |—Z=x
2x—3y—3
3y—2x—6lnT|=x
2x —3y—3
61In 4y |—3(y—x)
(Zx—3y—3) _ ov-x
4
16e¥™* = (2x — 3y — 3)?
35
’+X= X
X X
Lety =u?soy’ =2uu
2uu’ + “
uu' +—=—
X Ax
+1 1
Uu+—u=——
2x 2v/x

Integrating factor u(x)
p= e 05xtdx — 05Inx — Vx
Multiplying both sides by the integrating factor:

1 1
Veu' +—u=<

24/x 2
d 1
— (w/x) ==
dx ( ) 2
L +
Uuvx ==-x—r¢c¢
2
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6

2 T Vx 2vx
(x + 2¢)?
Yegs = U dx i
1+ 2c
(x—1)2
Yps = dx
36

Let f(x) =In(6 4+ 5x) =1In6 + In (1 + zx)

Letg(x) =In(6 —5x) =In6 +In (1 — %x)

Maclaurin expansion for f(x) is
54\ 5 25
(Ex) +0(x*) =In6+—-x——x2+0(x3)

f()—16+5 -
x) =1In X G 7

6 2
Maclaurin expansion for g(x) is

5 1/ 5 \? 5 25
= . N 3) = ——y — — 3
g(x)—1n6+( 6x) 2( 6x) +0(x*)=1In6 6x 72x + 0(x>)

5 5
) = f(x) —glx) = 3* +0(x3) = 3% for small values of x

l <6+5x
n 6 — 5x
37 a
Let f(x) = In(sinx + cos x)

cosx —sinx 1—tanx 2
f’(x): - = = —

sinx+cosx tanx+1 tanx+1

2sec?x 2

f"(x) = —

(tanx + 1)2 -7 (sinx + cos x)?
4(cosx — sinx)

flll(x) —

b
£(0) =0
£'(0) =1
fll (O) — _2
£7'(0) = 4

Maclaurin series:

(sinx + cos x)3

f(x) = f(0) + xf'(0) + x f”(o) + x f”’(O) + 0(x*)

2
f(x) = x — x? +§x +0(x4)

Let g(x) = arctan 2x
g(x) = (2x) — %(2)6)3 +0(x°) = 2x — §x3 + 0(x%)

3
2
. 2 3 4
~ (In(sinx + cos x) | xt A 3x +0(x%)
| arcanzx ) AW 5,8
x— arctan 2x x= 2x — §x3 + O(XS)
im 1+0(x)
=lMyr—————<
x>0 (2 + 0(x?)
1
2
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38 a

f(x) = eSinx
f'(x) =cosx e
Using product rule: Let u = cosx and v = eS"* sou’ = —sinx and v’ = cosx e

sinx

sinx

sinx sinx

—v) =uv' +u'v=cos?xe —sinxe

dx _

f""(x) = eS"*(cos? x — sinx)
b

f(0)=1

f'(0) =1

f7(0) =1

£(0) = 0,f*®(0) = -3

Maclaurin series:

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

2 3
f(x) = f(0) + xf’ (0)+ f”(0)+ f”’(0)+ f<4)(0)+0(x5)

1 1
f(x) =14+x+=-x%—=x +0(x5)

2 8
c
The Maclaurin series for g(x) = e*isg(x) =1+ x +- x += x3 +2, x + 0(x°)
. eX — esinx . %x + 0(%4) ) 1 1
fim {T} = lim &t = Im{e+ 0f =
39 a
sint
lim—=1
t-0 t
~ sin(4x?)
Then lim ——— =
x—0 X
And i sin(9x?) Lso i sin(9x?) 9
N T T U T e T 1
Summing these two limits:
sin(4x?) — sin(9x?) 9 5
im =l-—=—--
x-0 42 4 4
b
Maclaurin series for f(x) = sinx is
had 1) "x 2n+1
fx) = L
(2n + 1)!
Then smce g(x) = f(x?), the serles for g(x) is
(_1)n(x2)2n+1 (_1)11 4an+2
glx) = =
2n +1)! (2n+ 1)!
n=0
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C

1
Let ] =.[ g(x) dx
0

= D" flx“”” dx

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

— Cn+ 1)),
(=" [ x*n+3 1
— 2n + 1)! [4n + 3]0
-n* 1

~ L @2n+ Didn+3
n=0

=Yy,
n=0

for a sequence {a,,} where

= n+3)@2n+ D!

Since the sequence is decreasing and the series is alternating, the value to which the
series converges is approximately Sy with an absolute error less than ay,; for each N.
If the sum approximation is to be accurate to 4DP, require the absolute error to be less
than 0.00005

1

W1 =GN T 7N £ ) 000005

1
ai41 = 11—X5' = 0.000076

G241 = 7o = 0.000013 < 0.00005

So N = 2, and therefore the series is accurate to 4DP after three terms: a, — a; + a,
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40
y'=2xy' -y
yIII — zyl — yl + zxyll — zxyll + yl
y® =2y" +2xy" +y" = 2xy"" + 3y"
y®) = 29" 4+ 2xy® + 3y"" = 2xy® + 59"
It appears that the sequence of higher derivatives follows y ™+ = 2xy®+1 4
(2n — 1)y®b
Proving this by induction:
Proposition: y ™+ = 2xy™*D 4 (2n — 1)y™ forn > 0
Base casen = 0: y@ = 2xy’ —y = 2xy® + (2(0) — 1)y©@ so the proposition is
true forn = 0
Inductive step: Assume the proposition is true for integern =k > 0
So y*+2) = 2xy*+D 4 2k — 1)y®
Working towards: y*+3) = 2xy®*+2 4 (2k 4+ 1)y*+1)

d
(k+3) — — (v (k+2)
y - (y**?)

(72)
c
9o
=
=
(e)
(7]
©
()
=
[
S

d
~Ix (2xy®+D + (2k — 1)y®)  (by assumption)

— ny(k+2) + Zy(k+1) + (2]{ _ 1)y(k+1)
= 2xy®*+2) + (2k + 1)y*+D
So the proposition is true forn = k + 1
Conclusion:
The proposition is true for n = 0, and, if true forn = k, itis also true forn = k + 1.
Therefore, the proposition is true for all n € N by the principle of mathematical

induction
Lety = Z a,x"
y(0) = ao =0
y'(0)=a; =1
y"(0)=2a,=0
y&+2)(0) = (k + 2)! ay,, = 2k — 1)y™® from the induction above
21w
Qg2 = (k + 2)|y (0)

Even coefficients:
a,, = 0 for all integer n
Odd coefficients: substituting k = 2n — 1 into the formula above forn > 1

(4n — 3)y@=1(0)

Tant1 = 0 D)1

= m (47’1 - 3)(27’1 - 1)' Arn-—1
_ 4n-3
T @n+ 1)) !
Iterating this back to a; = 1:
1X5X9X..X(4n—3)

a =
2n+1 2n+ 1)!
=x+zl ><5><9...(4n—3)xZn+1 _ Z:1><5><9...(4n+1)xzwr1
2n+1)! 4 2n+ 1)!
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